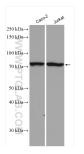
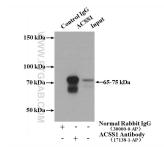
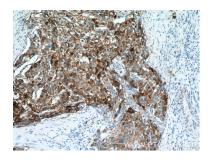
For Research Use Only

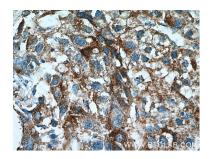

ACSS1 Polyclonal antibody Catalog Number:17138-1-AP Featured Product

Featured Product 18 Publications



Basic Information	Catalog Number: 17138-1-AP	GenBank Accession N BC039261	lumber:	Purification Method: Antigen affinity purification	
	Size:	GeneID (NCBI): 550ul, Concentration: 350 ug/ml by Janodrop and 227 ug/ml by Bradford UNIPROT ID: ource: Babbit Sobype:		Recommended Dilutions: WB 1:500-1:3000 IP 0.5-4.0 ug for 1.0-3.0 mg of total protein lysate IHC 1:100-1:400	
	150ul , Concentration: 350 ug/ml by				
	method using BSA as the standard;				
	Source:				
	IgG				
	Immunogen Catalog Number: AG10896	689 aa, 75 kDa			
		Observed MW: 70-75 kDa			
Applications	Tested Applications:		Positive Controls: WB : Caco-2 cells, Jurkat cells, mouse kidney tissue RAW 264.7 cells		
	WB, IP, IHC, ELISA Cited Applications:				
	WB, IHC, IF		IP : mouse kid	IP : mouse kidney tissue,	
	Species Specificity: IHC : Human, mouse, rat		IHC : human l	numan liver cancer tissue,	
	Cited Species:				
	human, mouse, rat, pig				
	Note-IHC: suggested antigen r TE buffer pH 9.0; (*) Alternativ retrieval may be performed w	vely, antigen			
	buffer pH 6.0				
Background Information	The ACSS (acetyl-CoA synthetase) er of free acetate into acetyl coenzyme ACSS2, and ACSS3. The main substra propionate. Two acetate related enzy distribution and subcellular localizat mainly in cardiac and skeletal muscl cytoplasmic enzyme, ACSS2 is strong brain and testis.ACSS2 participates i while ACSS1 is involved in acetate o	A (acetyl-CoA). The thi te of ACSS1 and ACSS2 imes, ACSS1(GenelD: & ion. On the one hand, a e as well as brown adi gly expressed in the liv n lipid synthesis and fa xidation. The function acid (TCA) cycle. Due to	ree known isofo 2 is acetate, whi 34532) and ACS as a mitochondr pose tissue. On ver, kidney and l acilitates protein al diferences in o its more thoro	heart and moderately expressed in the n acetylation by generating acetyl-CoA these enzymes involve energy ugh utilization of intracellular acetate,	
	The ACSS (acetyl-CoA synthetase) er of free acetate into acetyl coenzyme ACSS2, and ACSS3. The main substra propionate. Two acetate related enzy distribution and subcellular localizat mainly in cardiac and skeletal muscl cytoplasmic enzyme, ACSS2 is strong brain and testis.ACSS2 participates in while ACSS1 is involved in acetate o production through the tricarboxylic ACSS2 is expressed in almost all cell	A (acetyl-CoA). The thi te of ACSS1 and ACSS2 imes, ACSS1(GenelD: & ion. On the one hand, a e as well as brown adi gly expressed in the liv n lipid synthesis and fa xidation. The function acid (TCA) cycle. Due to	ree known isofo 2 is acetate, whi 34532) and ACS as a mitochondr pose tissue. On ver, kidney and l acilitates protein al diferences in o its more thoro ohysiological co	rms of human ACSS are termed ACSS1 ile the preferential substrate of ACSS3 52 (Genel D:55902) difer in their tissue ial matrix enzyme, ACSS1 is expressed the other hand, as a nuclear and heart and moderately expressed in the n acetylation by generating acetyl-CoA these enzymes involve energy ugh utilization of intracellular acetate,	
	The ACSS (acetyl-CoA synthetase) er of free acetate into acetyl coenzyme ACSS2, and ACSS3. The main substra propionate. Two acetate related enzy distribution and subcellular localizat mainly in cardiac and skeletal muscl cytoplasmic enzyme, ACSS2 is strong brain and testis.ACSS2 participates in while ACSS1 is involved in acetate of production through the tricarboxylic ACSS2 is expressed in almost all cell Author	A (acetyl-CoA). The thi te of ACSS1 and ACSS2 imes, ACSS1(GenelD: 8 ion. On the one hand, a e as well as brown adi gly expressed in the liv n lipid synthesis and fa xidation. The function acid (TCA) cycle. Due to types under diferent p	ree known isofo 2 is acetate, whi 34532) and ACS! as a mitochondr pose tissue. On ver, kidney and I acilitates protein al diferences in o its more thoro ohysiological co	rms of human ACSS are termed ACSS1 ile the preferential substrate of ACSS3 52 (Genel D:55902) difer in their tissue ial matrix enzyme, ACSS1 is expressed the other hand, as a nuclear and heart and moderately expressed in the n acetylation by generating acetyl-CoA these enzymes involve energy ugh utilization of intracellular acetate, nditions.	
	The ACSS (acetyl-CoA synthetase) er of free acetate into acetyl coenzyme ACSS2, and ACSS3. The main substra propionate. Two acetate related enzy distribution and subcellular localizat mainly in cardiac and skeletal muscl cytoplasmic enzyme, ACSS2 is strong brain and testis.ACSS2 participates in while ACSS1 is involved in acetate o production through the tricarboxylic ACSS2 is expressed in almost all cell Author Pu Judith Schweisgut 28	A (acetyl-CoA). The thi te of ACSS1 and ACSS imes, ACSS1(Genel D: & ion. On the one hand, a e as well as brown adi gly expressed in the liv a lipid synthesis and fa xidation. The function acid (TCA) cycle. Due to types under diferent p bmed ID Jour 314781 EMB	ree known isofo 2 is acetate, whi 34532) and ACS! as a mitochondr pose tissue. On ver, kidney and I acilitates protein al diferences in o its more thoro ohysiological co	rms of human ACSS are termed ACSS1 ile the preferential substrate of ACSS3 52 (Genel D:55902) difer in their tissue ial matrix enzyme, ACSS1 is expressed the other hand, as a nuclear and heart and moderately expressed in the n acetylation by generating acetyl-CoA these enzymes involve energy ugh utilization of intracellular acetate, inditions.	
	The ACSS (acetyl-CoA synthetase) er of free acetate into acetyl coenzyme ACSS2, and ACSS3. The main substra propionate. Two acetate related enzy distribution and subcellular localizat mainly in cardiac and skeletal muscl cytoplasmic enzyme, ACSS2 is strong brain and testis.ACSS2 participates ii while ACSS1 is involved in acetate o production through the tricarboxylic ACSS2 is expressed in almost all cell Author Pu Judith Schweisgut 28 Wenjun Zhou 33	A (acetyl-CoA). The thi te of ACSS1 and ACSS2 imes, ACSS1(GenelD: & ion. On the one hand, a e as well as brown adi ly expressed in the liv n lipid synthesis and fa xidation. The function acid (TCA) cycle. Due to types under diferent p bmed ID Jour 314781 EMB 682931 J Ce	ree known isofo 2 is acetate, whi 34532) and ACS! as a mitochondr pose tissue. On /er, kidney and I acilitates protein al diferences in o its more thoro physiological co	rms of human ACSS are termed ACSS1 ile the preferential substrate of ACSS3 52 (Genel D:55902) difer in their tissue ial matrix enzyme, ACSS1 is expressed the other hand, as a nuclear and heart and moderately expressed in the nacetylation by generating acetyl-CoA these enzymes involve energy ugh utilization of intracellular acetate, nditions. Application WB	
Notable Publications	The ACSS (acetyl-CoA synthetase) er of free acetate into acetyl coenzyme ACSS2, and ACSS3. The main substra propionate. Two acetate related enzy distribution and subcellular localizat mainly in cardiac and skeletal muscl cytoplasmic enzyme, ACSS2 is strong brain and testis.ACSS2 participates ii while ACSS1 is involved in acetate o production through the tricarboxylic ACSS2 is expressed in almost all cell Author Pu Judith Schweisgut 28 Wenjun Zhou 33	A (acetyl-CoA). The thi te of ACSS1 and ACSS: rmes, ACSS1(Genel D: & ion. On the one hand, a e as well as brown adi gly expressed in the liv h lipid synthesis and fa xidation. The function acid (TCA) cycle. Due to types under diferent p bmed ID Jour 314781 EMB 682931 J Ce 263700 Tran	ree known isofo 2 is acetate, whi 34532) and ACS as a mitochondr pose tissue. On ver, kidney and l acilitates protein al diferences in o its more thoro ohysiological co mal O J II Physiol	rms of human ACSS are termed ACSS1 ile the preferential substrate of ACSS3 52 (Genel D:55902) difer in their tissue ial matrix enzyme, ACSS1 is expressed the other hand, as a nuclear and heart and moderately expressed in the n acetylation by generating acetyl-Co/ these enzymes involve energy ugh utilization of intracellular acetate inditions. Application WB IF,WB	
Notable Publications	The ACSS (acetyl-CoA synthetase) er of free acetate into acetyl coenzyme ACSS2, and ACSS3. The main substra propionate. Two acetate related enzy distribution and subcellular localizat mainly in cardiac and skeletal muscl cytoplasmic enzyme, ACSS2 is strong brain and testis.ACSS2 participates in while ACSS1 is involved in acetate o production through the tricarboxylic ACSS2 is expressed in almost all cell Author Pu Judith Schweisgut 28 Wenjun Zhou 33 Sarah Calhoun 35 Storage: Store at -20°C. Stable for one year aft Storage Buffer:	A (acetyl-CoA). The thi te of ACSS1 and ACSS: imes, ACSS1(Genel D: & ion. On the one hand, a e as well as brown adi gly expressed in the liv hipid synthesis and fa xidation. The function acid (TCA) cycle. Due to types under diferent p bmed ID Jour 314781 EMB 682931 J Ce 263700 Tran er shipment. % glycerol pH 7.3.	ree known isofo 2 is acetate, whi 34532) and ACS as a mitochondr pose tissue. On ver, kidney and l acilitates protein al diferences in o its more thoro ohysiological co mal O J II Physiol	rms of human ACSS are termed ACSS1 ile the preferential substrate of ACSS3 52 (Genel D:55902) difer in their tissue ial matrix enzyme, ACSS1 is expressed the other hand, as a nuclear and heart and moderately expressed in the n acetylation by generating acetyl-CoA these enzymes involve energy ugh utilization of intracellular acetate, inditions. Application WB IF,WB	
Background Information Notable Publications Storage	The ACSS (acetyl-CoA synthetase) er of free acetate into acetyl coenzyme ACSS2, and ACSS3. The main substra propionate. Two acetate related enzy distribution and subcellular localizat mainly in cardiac and skeletal muscl cytoplasmic enzyme, ACSS2 is strong brain and testis.ACSS2 participates in while ACSS1 is involved in acetate o production through the tricarboxylic ACSS2 is expressed in almost all cell Author Pu Judith Schweisgut 28 Wenjun Zhou 33 Sarah Calhoun 35 Storage: Storage Buffer: PBS with 0.02% sodium azide and 50	A (acetyl-CoA). The thi te of ACSS1 and ACSS: imes, ACSS1(Genel D: & ion. On the one hand, a e as well as brown adi gly expressed in the liv hipid synthesis and fa xidation. The function acid (TCA) cycle. Due to types under diferent p bmed ID Jour 314781 EMB 682931 J Ce 263700 Tran er shipment. % glycerol pH 7.3.	ree known isofo 2 is acetate, whi 34532) and ACS as a mitochondr pose tissue. On ver, kidney and l acilitates protein al diferences in o its more thoro ohysiological co mal O J II Physiol	rms of human ACSS are termed ACSS1 ile the preferential substrate of ACSS3 52 (Genel D:55902) difer in their tissue ial matrix enzyme, ACSS1 is expressed the other hand, as a nuclear and heart and moderately expressed in the n acetylation by generating acetyl-Co/ these enzymes involve energy ugh utilization of intracellular acetate inditions. Application WB IF,WB	


Selected Validation Data


Various lysates were subjected to SDS PAGE followed by western blot with 17138-1-AP (ACSS1 antibody) at dilution of 1:1000 incubated at room temperature for 1.5 hours.

IP result of anti-ACSS1 (IP:17138-1-AP, 4ug: Detection:17138-1-AP 1:700) with mouse kidney tissue lysate 4000ug.

Immunohistochemical analysis of paraffinembedded human liver cancer tissue slide using 17138-1-AP (ACSS1 Antibody) at dilution of 1:200 (under 10x lens).

Immunohistochemical analysis of paraffinembedded human liver cancer tissue slide using 17138-1-AP (ACSS1 Antibody) at dilution of 1:200 (under 40x lens).