For Research Use Only

KLF13 Polyclonal antibody

Catalog Number:18352-1-AP

Basic Information	Catalog Number: 18352-1-AP	UNIPROT ID: Q9Y2Y9 Full Name:		Purification Method: Antigen affinity purification			
	Size:			Recommended Dilutions: WB 1:1000-1:4000 IHC 1:20-1:200			
	150ul , Concentration: 450 ug/ml by Nanodrop; Source: Rabbit Isotype: IgG Immunogen Catalog Number: AG13200						
					Kruppel-like factor 1	5	
					Calculated MW: 31 kDa		
					Observed MW:		
		37-45 kDa					
		Applications	Tested Applications:		Positive Con	rols:	
			WB, IHC, ELISA WB : HT-29		WB : HT-29 ce	lls, rat liver tissue	
			Cited Applications: WB, IHC, IF	IHC : human brain tissue,			
Species Specificity:							
human, rat, mouse							
Cited Species: human, mouse, rat							
Note-IHC: suggested antigen I TE buffer pH 9.0; (*) Alternati retrieval may be performed w buffer pH 6.0	vely, antigen						
Background Information	Theses transcription factors bind to C activation of transcription of variety	G-rich sequences and of genes in the cells of oter binding sites, the	related GT and (erythroid linea same as NFKB, a	ge, such as GATA1, glycophorin B. It also nd then transactivates the RANTES gene			
	Theses transcription factors bind to C activation of transcription of variety binds to the A and A/B RANTES prom The calculated molecular weight of I	G-rich sequences and of genes in the cells of oter binding sites, the	related GT and (erythroid linea same as NFKB, a modified KLF1	CACCC boxes. KLF 13 involved in ge, such as GATA1, glycophorin B. It also nd then transactivates the RANTES gene			
Background Information	Theses transcription factors bind to C activation of transcription of variety binds to the A and A/B RANTES prom The calculated molecular weight of I Author Pul	G-rich sequences and of genes in the cells of oter binding sites, the (LF13 is 31 kDa, but the	related GT and (erythroid linea same as NFKB, a modified KLF 1 nal	CACCC boxes. KLF13 involved in ge, such as GATA1, glycophorin B. It also nd then transactivates the RANTES gene 3 protein is about 37-45 kDa.			
	Theses transcription factors bind to C activation of transcription of variety binds to the A and A/B RANTES prom The calculated molecular weight of IAuthorPulJoshua E Burda350	G-rich sequences and of genes in the cells of oter binding sites, the start of the second site of the second	related GT and (erythroid linea same as NFKB, a modified KLF 1 nal	ACCC boxes. KLF 13 involved in ge, such as GATA1, glycophorin B. It also nd then transactivates the RANTES gene 3 protein is about 37-45 kDa. Application IHC			
	Theses transcription factors bind to C activation of transcription of variety binds to the A and A/B RANTES prom The calculated molecular weight of I Author Pul Joshua E Burda 350 Chao-Chun Chen 360	C-rich sequences and of genes in the cells of oter binding sites, the cells of the cells	related GT and 6 enythroid linea same as NFKB, a e modified KLF 1 nal	ACCC boxes. KLF 13 involved in ge, such as GATA1, glycophorin B. It also nd then transactivates the RANTES gene 3 protein is about 37-45 kDa. Application IHC			
	AuthorPutJoshua E Burda350Chao-Chun Chen360	C-rich sequences and i of genes in the cells of oter binding sites, the (LF 13 is 31 kDa, but the bmed ID Journ 614216 Natu 381108 J Clin 523679 Cell ter shipment.	related GT and G erythroid linea same as NFKB, a e modified KLF 1 nal re n Transl Hepato	CACCC boxes. KLF13 involved in ge, such as GATA1, glycophorin B. It also nd then transactivates the RANTES gene 3 protein is about 37-45 kDa. Application IHC WB,IHC			

For technical support and original validation data for this product please contact: T: 1 (888) 4PTGLAB (1-888-478-4522) (toll free E: proteintech@ptglab.com in USA), or 1(312) 455-8498 (outside USA) W: ptglab.com

This product is exclusively available under Proteintech Group brand and is not available to purchase from any other manufacturer.

Selected Validation Data

Various lysates were subjected to SDS PAGE followed by western blot with 18352-1-AP (KLF 13 antibody) at dilution of 1:2000 incubated at room temperature for 1.5 hours. Immunohistochemical analysis of paraffinembedded human brain using 18352-1-AP (KLF13 antibody) at dilution of 1:50 (under 10x lens).