For Research Use Only

SNAP25 Monoclonal antibody

Catalog Number:60159-1-lg 9 Publications

Basic Information	Catalog Number: 60159-1-lø	GenBank Accession Nu BC 010647	ımber:	Purification Method: Protein A purification	
	Sizo:				
	150ul, Concentration: 1000 ug/ml by Nanodrop and 635 ug/ml by Bradford method using BSA as the standard; Source: Mouse Isotype: IgG2b Immunogen Catalog Number: AG6695	6616		3E4B7	
		UNIPROT ID: P60880		Recommended Dilutions: WB 1:5000-1:20000 IP 0.5-4.0 ug for 1.0-3.0 mg of total protein lysate IHC 1:1000-1:4000	
		Full Name: synaptosomal-associated protein, 25kDa			
		Calculated MW: 23 kDa		IF/ICC 1:200-1:800	
		Observed MW: 25-30 kDa			
Applications	Tested Applications:Positive CoWB, IHC, IF/ICC, IP, ELISAWB : pig brCited Applications:cells, HEK-WB, IHC, IFtissue		Positive Cont	rols:	
			WB: pig brain cells, HEK-292 tissue	brain tissue, fetal human brain tissue, PC-12 K-293 cells, rat brain tissue, mouse brain	
	Species Specificity:		IP: mouse bra	in tissue	
	human, mouse, rat, pig		IHC : rat brain	at brain tissue mouse brain tissue	
	Cited Species:				
Background Information	The synaptosomal associated protein of 25 kD (SNAP-25) was first identified as a major synaptic protein by Wilson and colleagues. The protein interacts with syntaxin and synaptobrevin through its N-terminal and C-terminal - helical domains. Its palmitoylation domain is located in the middle of the molecule that contains four cysteine residues. Mutation of the cysteines abolishes palmitoylation and membrane binding. Several elegant studies using synaptosome preparations and permeabilized PC12 cells have suggested that SNAP-25 may act in the late post- docking steps of exocytosis. By limited proteolysis and in vitro binding assay, it is proposed that the two helix domains act independently and contribute equally to form the SNARE complex with syntaxin and synaptobrevin. It seems that a major regulatory element is located in the C-terminus of SNAP-25. Removing a 9 amino acid sequence of SNAP-25 inhibited neurosecretion in chromaffin cells.				
	helical domains. Its palmitoylation of residues. Mutation of the cysteines al synaptosome preparations and perm docking steps of exocytosis. By limito domains act independently and contr seems that a major regulatory eleme of SNAP-25 inhibited neurosecretion	lomain is located in the polishes palmitoylation. eabilized PC 12 cells have ed proteolysis and in vit ibute equally to form the nt is located in the C-tee in chromaffin cells.	middle of the and membrar ve suggested t rro binding ass ne SNARE comp rminus of SNA	molecule that contains four cysteine e binding. Several elegant studies usin hat SNAP-25 may act in the late post- ay, it is proposed that the two helix olex with syntaxin and synaptobrevin. I P-25. Removing a 9 amino acid sequence	
Notable Publications	helical domains. Its palmitoylation of residues. Mutation of the cysteines al synaptosome preparations and permi docking steps of exocytosis. By limite domains act independently and contri seems that a major regulatory eleme of SNAP-25 inhibited neurosecretion	Iomain is located in the polishes palmitoylation eabilized PC 12 cells hai ed proteolysis and in vit ibute equally to form th nt is located in the C-te in chromaffin cells.	middle of the and membrar ve suggested t tro binding ass te SNARE comp rminus of SNA	Molecule that contains four cysteine e binding. Several elegant studies usin hat SNAP-25 may act in the late post- ay, it is proposed that the two helix olex with syntaxin and synaptobrevin. I P-25. Removing a 9 amino acid sequence Application	
Notable Publications	helical domains. Its palmitoylation of residues. Mutation of the cysteines al synaptosome preparations and perm docking steps of exocytosis. By limite domains act independently and contr seems that a major regulatory eleme of SNAP-25 inhibited neurosecretion Author Pubre Zi-Jun Wang 3400	Iomain is located in the polishes palmitoylation eabilized PC 12 cells have ed proteolysis and in vit ibute equally to form the nt is located in the C-te in chromaffin cells.	middle of the and membrar ve suggested t ro binding ass le SNARE comp rminus of SNA	molecule that contains four cysteine e binding. Several elegant studies usin hat SNAP-25 may act in the late post- ay, it is proposed that the two helix olex with syntaxin and synaptobrevin. I P-25. Removing a 9 amino acid sequence Application ogy WB	
Notable Publications	helical domains. Its palmitoylation of residues. Mutation of the cysteines al synaptosome preparations and permi docking steps of exocytosis. By limite domains act independently and contri- seems that a major regulatory eleme of SNAP-25 inhibited neurosecretion Author Pubmi Zi-Jun Wang 3400 Jamal B Williams 3442	Iomain is located in the polishes palmitoylation eabilized PC 12 cells have ed proteolysis and in vit ibute equally to form th int is located in the C-te in chromaffin cells.	middle of the and membrar ve suggested t ro binding ass he SNARE comp rminus of SNA	ogn Brite that contains four cysteine e binding. Several elegant studies usin hat SNAP-25 may act in the late post- ay, it is proposed that the two helix blex with syntaxin and synaptobrevin. I P-25. Removing a 9 amino acid sequence ogy WB WB,IF	
Notable Publications	AuthorPubrAuthorPubrZi-Jun Wang34400Jamal B Williams3196	Iomain is located in the polishes palmitoylation eabilized PC 12 cells ha ed proteolysis and in vit ibute equally to form th int is located in the C-te in chromaffin cells. Ied ID Journal 7043 Neuropsy 3299 Brain Con 2145 Neuroscie	middle of the and membrar ve suggested t tro binding ass he SNARE comp rminus of SNA chopharmacol nmun ence	Application ogy WB WB,IF WB,IFC	
Notable Publications	helical domains. Its palmitoylation of residues. Mutation of the cysteines all synaptosome preparations and permidocking steps of exocytosis. By limite domains act independently and contributed seems that a major regulatory element of SNAP-25 inhibited neurosecretion Author Pubmid Zi-Jun Wang 34400 Jamal B Williams 34422 Xing-Lian Duan 3196 Storage: Storage Buffer: PBS with 0.02% sodium azide and 500 Aliquoting is unnecessary for -20°C s	lomain is located in the polishes palmitoylation eabilized PC12 cells har ed proteolysis and in vir ibute equally to form tr int is located in the C-te in chromaffin cells. ned ID Journal 7043 Neuropsy 3299 Brain Con 2145 Neuroscie er shipment. % glycerol pH 7.3. torage	middle of the and membrar ve suggested t ro binding ass he SNARE comp rminus of SNA chopharmacol nmun ence	ogn Treatment and the centrified of the centrifi	

in USA), or 1(312) 455-8498 (outside USA)

E: proteintech@ptglab.com W: ptglab.com

Group brand and is not available to purchase from any other manufacturer.

Selected Validation Data

pig brain tissue were subjected to SDS PAGE followed by western blot with 60159-1-lg (SNAP25 antibody) at dilution of 1:10000 incubated at room temperature for 1.5 hours.

IP result of anti-SNAP25 (IP:60159-1-Ig, 3ug; Detection:60159-1-Ig 1:500) with mouse brain tissue lysate 3600ug.

Immunohistochemical analysis of paraffinembedded rat brain tissue slide using 60159-1-1g (SNAP25 antibody) at dilution of 1:2000 (under 10x lens). Heat mediated antigen retrieval with Tris-EDTA buffer (pH 9.0).

Immunohistochemical analysis of paraffinembedded rat brain tissue slide using 60159-1-1g (SNAP25 antibody) at dilution of 1:2000 (under 40x lens). Heat mediated antigen retrieval with Tris-EDTA buffer (pH 9.0).

Immunofluorescent analysis of (-20°C Ethanol) fixed PC-12 cells using SNAP25 antibody (60159-1-Ig, Clone: 3E4B7) at dilution of 1:400 and Multi-rAb CoraLite ® Plus 488-Goat Anti-Mouse Recombinant Secondary Antibody (H+L) (RGAM002).