For Research Use Only

APP Polyclonal antibody Catalog Number: 27320-1-AP 2 Publications

Basic Information	Catalog Number: 27320-1-AP	GenBank Accession Number: BC004369	Purification Method: Antigen affinity purification				
	Size: 150ul, Concentration: 500 ug/ml by Nanodrop; Source: Rabbit Isotype: IgG Immunogen Catalog Number: AG26299	GeneID (NCBI):	Recommended Dilutions:				
		351	WB 1:500-1:1000				
		UNIPROT ID:	IHC 1:50-1:500				
		P05067					
		Full Name: amyloid beta (A4) precursor protein Calculated MW:					
				87 kDa			
		Observed MW: 100 kDa					
		Applications	Tested Applications:	Positive Controls:			
WB, IHC, ELISA Cited Applications:			: fetal human brain tissue, HEK-293T cells, U-251 .s, mouse brain tissue, HeLa cells, rat brain tissue A-MB-231 cells				
WB, IHC							
Species Specificity: human, mouse, rat	IHC : mouse brain tissue, human gliomas tissue						
Cited Species: human, mouse Note-IHC: suggested antigen retrieval with TE buffer pH 9.0; (*) Alternatively, antigen retrieval may be performed with citrate buffer pH 6.0							
				A β derives from APP via proteolytic cleavage by proteases called a-, β - and γ -secretase. The a-secretase cleavage precludes the formation of A β , while the β - and γ -cleavages generate APP components with amyloidogenic features. Amyloid beta A4 precursor protein(APP), encoded by APP gene which locate on human chromosome 21q, a cell surface receptor and performs physiological functions on the surface of neurons relevant to neurite growth, neuronal adhesion and axonogenesis. APP expressed in all fetal tissues and is pronounced in brain, kidney, heart and spleen, but weak in liver. Defects in APP are the cause of Alzheimer disease type 1 (AD1). Amyloid β (A β) precursor protein (APP) is a 100-140 kDa transmembrane glycoprotein that exists as several isoforms. APP can be cleaved into several chains, this antibody could recognize N-terminal fragment of APP (N-APP).			
			Background Information	precludes the formation of Aβ, while features. Amyloid beta A4 precursor a cell surface receptor and performs neuronal adhesion and axonogenesi and spleen, but weak in liver. Defect precursor protein (APP) is a 100-140	the β - and γ -cleavages generate protein(APP), encoded by APP ge physiological functions on the su s. APP expressed in all fetal tissu s in APP are the cause of Alzheim (Da transmembrane glycoproteir	APP components with amyloidogenic ne which locate on human chromosome 21q rface of neurons relevant to neurite growth, es and is pronounced in brain, kidney, heart er disease type 1 (AD1). Amyloid β (A β) n that exists as several isoforms. APP can be	
	precludes the formation of Aβ, while features. Amyloid beta A4 precursor a cell surface receptor and performs neuronal adhesion and axonogenesi and spleen, but weak in liver. Defect precursor protein (APP) is a 100-140 cleaved into several chains, this anti	the β - and γ -cleavages generate protein(APP), encoded by APP ge physiological functions on the su s. APP expressed in all fetal tissu s in APP are the cause of Alzheim (Da transmembrane glycoproteir	APP components with amyloidogenic ne which locate on human chromosome 21q, rface of neurons relevant to neurite growth, es and is pronounced in brain, kidney, heart er disease type 1 (AD1). Amyloid β (A β) n that exists as several isoforms. APP can be				
	precludes the formation of Aβ, while features. Amyloid beta A4 precursor a cell surface receptor and performs neuronal adhesion and axonogenesi and spleen, but weak in liver. Defect precursor protein (APP) is a 100-140 l cleaved into several chains, this anti	the β - and γ -cleavages generate protein(APP), encoded by APP ge physiological functions on the su s. APP expressed in all fetal tissu s in APP are the cause of Alzheim (Da transmembrane glycoproteir body could recognize N-terminal	APP components with amyloidogenic ne which locate on human chromosome 21q rface of neurons relevant to neurite growth, es and is pronounced in brain, kidney, heart er disease type 1 (AD1). Amyloid β (A β) n that exists as several isoforms. APP can be fragment of APP (N-APP). Application				
	precludes the formation of Aβ, while features. Amyloid beta A4 precursor a cell surface receptor and performs neuronal adhesion and axonogenesi and spleen, but weak in liver. Defect precursor protein (APP) is a 100-140 cleaved into several chains, this anti Author Put Yaqi Wang 358	the β- and γ-cleavages generate protein(APP), encoded by APP ge ohysiological functions on the su s. APP expressed in all fetal tissu s in APP are the cause of Alzheim «Da transmembrane glycoproteir body could recognize N-terminal med ID Journal	APP components with amyloidogenic ne which locate on human chromosome 21q rface of neurons relevant to neurite growth, es and is pronounced in brain, kidney, heart er disease type 1 (AD1). Amyloid β (A β) n that exists as several isoforms. APP can be fragment of APP (N-APP). Application				
Notable Publications	precludes the formation of Aβ, while features. Amyloid beta A4 precursor a cell surface receptor and performs neuronal adhesion and axonogenesi and spleen, but weak in liver. Defect precursor protein (APP) is a 100-140 l cleaved into several chains, this anti Author Put Yaqi Wang 358 Seda Kose 372 Storage: Storage Buffer: PBS with 0.02% sodium azide and 500	the β- and γ-cleavages generate protein(APP), encoded by APP ge ohysiological functions on the su s. APP expressed in all fetal tissu s in APP are the cause of Alzheim (Da transmembrane glycoprotein body could recognize N-terminal med ID Journal 183144 Alzheimers Res 69967 Brain Res	APP components with amyloidogenic ne which locate on human chromosome 21q rface of neurons relevant to neurite growth, es and is pronounced in brain, kidney, heart ier disease type 1 (AD1). Amyloid β (Aβ) n that exists as several isoforms. APP can be fragment of APP (N-APP). Application Ther WB				
Background Information Notable Publications Storage	precludes the formation of Aβ, while features. Amyloid beta A4 precursor a cell surface receptor and performs neuronal adhesion and axonogenesi and spleen, but weak in liver. Defect precursor protein (APP) is a 100-140 l cleaved into several chains, this anti Author Put Yaqi Wang 358 Seda Kose 372 Storage: Storage: Storage Buffer:	the β- and γ-cleavages generate protein(APP), encoded by APP ge ohysiological functions on the su s. APP expressed in all fetal tissu s in APP are the cause of Alzheim (Da transmembrane glycoprotein body could recognize N-terminal med ID Journal 183144 Alzheimers Res 69967 Brain Res	APP components with amyloidogenic ne which locate on human chromosome 21c rface of neurons relevant to neurite growth, es and is pronounced in brain, kidney, heart ier disease type 1 (AD1). Amyloid β (Aβ) n that exists as several isoforms. APP can be fragment of APP (N-APP). Application Ther WB				

For technical support and original validation data for this product please contact:T: 1 (888) 4PTGLAB (1-888-478-4522) (toll free
in USA), or 1(312) 455-8498 (outside USA)E: proteintech@ptglab.comW: ptglab.comW: ptglab.com

This product is exclusively available under Proteintech Group brand and is not available to purchase from any other manufacturer.

Selected Validation Data

Various lysates were subjected to SDS PAGE followed by western blot with 27320-1-AP (beta Amyloid antibody) at dilution of 1:800 incubated at room temperature for 1.5 hours. Immunohistochemical analysis of paraffinembedded mouse brain tissue slide using 27320-1-AP (beta Amyloid antibody) at dilution of 1:200 (under 40x lens). Heat mediated antigen retrieval with Tris-EDTA buffer (pH 9.0).

Immunohistochemical analysis of paraffinembedded mouse brain tissue slide using 27320-1-AP (beta Amyloid antibody) at dilution of 1:200 (under 10x lens). Heat mediated antigen retrieval with Tris-EDTA buffer (pH 9.0).