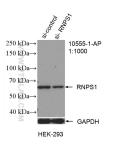
For Research Use Only

RNPS1 Polyclonal antibody

Catalog Number:10555-1-AP

Featured Product

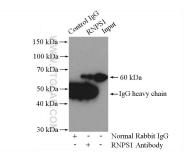
4 Publications

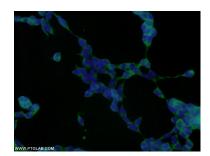


Basic Information	Catalog Number:	10555-1-APBC001838Size:GeneID (NCBI):150ul, Concentration: 200 µg/ml by10921Nanodrop and 133 µg/ml by Bradford method using BSA as the standard;UNIPROT ID: Q15287Source:Full Name: RAbbitRabbitRNA binding protein S1, serine-rich domain		Purification Method: Antigen affinity purification Recommended Dilutions: WB 1:500-1:2000 IP 0.5-4.0 ug for 1.0-3.0 mg of total protein lysate IF/ICC 1:10-1:100	
	method using BSA as the standard;				
	Rabbit				
	lgG	Calculated MW:			
	Immunogen Catalog Number: AG0844	34 kDa			
		Observed MW: 55-60 kDa			
Applications	Tested Applications:		Positive Controls:		
	WB, IP, IF, ELISA		WB: HEK-293	WB : HEK-293 cells, mouse brain tissue, Raji cells mouse kidney tissue, human brain tissue	
	Cited Applications: WB, IP, IF, IHC		mouse kidney		
	Species Specificity:	IP: HEK-29		ells,	
	human, mouse, rat		IF/ICC : HEK-2	IF/ICC : HEK-293 cells,	
Background Informatic	Cited Species: human, mouse The splicing process of mRNA must b				• •
Background Informatic	human, mouse	ocess involves more t ative splicing of a nun n of alternative splici I decay (NMD) of mRN	than 50 proteins in nber of pre-mRNA ing in a substrate IAs containing pre	n the splicing comple .s. It participates in b dependent manner, a mature stop codons.	ex. RNPS1 is a oth constitutive and involved in
	human, mouse The splicing process of mRNA must b templates for translation. And this pr versatile factor that regulates alterna splicing and in distinctive modulatio UPF2-dependent nonsense-mediatec phosphorylation site is important for	ocess involves more t ative splicing of a nun n of alternative splici I decay (NMD) of mRN splicing and translati	than 50 proteins in nber of pre-mRNA ing in a substrate IAs containing pre	n the splicing comple .s. It participates in b dependent manner, a mature stop codons.	ex. RNPS1 is a oth constitutive and involved in Its ser-53
	human, mouse The splicing process of mRNA must b templates for translation. And this pr versatile factor that regulates alterna splicing and in distinctive modulatio UPF 2-dependent nonsense-mediated phosphorylation site is important for Author Pul	ocess involves more t ative splicing of a num n of alternative splici d decay (NMD) of mRN. splicing and translati	than 50 proteins in nber of pre-mRNA ing in a substrate As containing pre ion stimulation ac	n the splicing comple .s. It participates in b dependent manner, a mature stop codons.	ex. RNP51 is a oth constitutive and involved in Its ser-53 Application
	human, mouse The splicing process of mRNA must b templates for translation. And this pr versatile factor that regulates alterna splicing and in distinctive modulatio UPF 2-dependent nonsense-mediated phosphorylation site is important for Author Pul Hana Cho 350	ocess involves more t ative splicing of a num in of alternative splici decay (NMD) of mRN splicing and translati bmed ID Jour 675814 Mol	than 50 proteins in nber of pre-mRNA ing in a substrate As containing pre ion stimulation ac	n the splicing comple .s. It participates in b dependent manner, a mature stop codons.	ex. RNP51 is a oth constitutive and involved in Its ser-53 Application WB,IP
	human, mouse The splicing process of mRNA must b templates for translation. And this pr versatile factor that regulates alterna splicing and in distinctive modulatio UPF2-dependent nonsense-mediatec phosphorylation site is important for Author Put Hana Cho 350 Valentina ladevaia 350	ocess involves more t ative splicing of a num in of alternative splici decay (NMD) of mRN. splicing and translati bmed ID Jour 675814 Mol D98996 J Ce	than 50 proteins in nber of pre-mRNA ing in a substrate (As containing pre- ion stimulation ac rnal	n the splicing comple s. It participates in b dependent manner, a mature stop codons. ctivity in vitro	ex. RNPS1 is a oth constitutive and involved in Its ser-53 Application
Background Informatio	human, mouse The splicing process of mRNA must b templates for translation. And this pr versatile factor that regulates alterna splicing and in distinctive modulatio UPF2-dependent nonsense-mediatec phosphorylation site is important for Author Put Hana Cho 350 Valentina ladevaia 350	ocess involves more t ative splicing of a num in of alternative splici decay (NMD) of mRN. splicing and translati bmed ID Jour 675814 Mol D98996 J Ce	than 50 proteins in nber of pre-mRNA ing in a substrate As containing pre- ion stimulation ac rnal . Cell ell Sci	n the splicing comple s. It participates in b dependent manner, a mature stop codons. ctivity in vitro	ex. RNPS1 is a oth constitutive and involved in Its ser-53 Application WB,IP IF
Notable Publications	human, mouse The splicing process of mRNA must b templates for translation. And this pr versatile factor that regulates alterna splicing and in distinctive modulatio UPF2-dependent nonsense-mediatec phosphorylation site is important for Author Pul Hana Cho 355 Valentina ladevaia 355 Zhi Zhang 311 Storage: Storage Buffer:	ocess involves more t ative splicing of a num in of alternative splici I decay (NMD) of mRN. splicing and translati bmed ID Jour 675814 Mol 098996 J Ce 831174 Bioc	than 50 proteins in nber of pre-mRNA ing in a substrate As containing pre- ion stimulation ac rnal . Cell ell Sci	n the splicing comple s. It participates in b dependent manner, a mature stop codons. ctivity in vitro	ex. RNP51 is a oth constitutive and involved in Its ser-53 Application WB,IP IF
	human, mouse The splicing process of mRNA must b templates for translation. And this pr versatile factor that regulates alterna splicing and in distinctive modulatio UPF2-dependent nonsense-mediatec phosphorylation site is important for Author Pul Hana Cho 359 Valentina ladevaia 359 Zhi Zhang 311 Storage: Store at -20°C. Stable for one year aft	ocess involves more t ative splicing of a num in of alternative splici decay (NMD) of mRN. splicing and translati omed ID Jour 675814 Mol 098996 J Ce 831174 Bioc	than 50 proteins in nber of pre-mRNA ing in a substrate As containing pre- ion stimulation ac rnal . Cell ell Sci	n the splicing comple s. It participates in b dependent manner, a mature stop codons. ctivity in vitro	ex. RNPS1 is a oth constitutive and involved in Its ser-53 Application WB,IP IF

For technical support and original validation data for this product please contact:T: 1 (888) 4PTGLAB (1-888-478-4522) (toll free
in USA), or 1(312) 455-8498 (outside USA)E: proteintech@ptglab.comW: ptglab.com

This product is exclusively available under Proteintech Group brand and is not available to purchase from any other manufacturer.


Selected Validation Data



WB result of RNPS1 antibody (10555-1-AP; 1:1000; incubated at room temperature for 1.5 hours) with sh-Control and sh-RNPS1 transfected HEK-293 cells.

HEK-293 cells were subjected to SDS PAGE followed by western blot with 10555-1-AP (RNPS1 antibody) at dilution of 1:1000 incubated at room temperature for 1.5 hours.

IP result of anti-RNPS1 (IP:10555-1-AP, 4ug; Detection:10555-1-AP 1:800) with HEK-293 cells lysate 3200ug.

Immunofluorescent analysis of HEK-293 cells using 10555-1-AP (RNPS1 antibody) at dilution of 1:25 and Alexa Fluor 488-conjugated AffiniPure Goat Anti-Rabbit IgG(H+L).