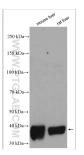
For Research Use Only

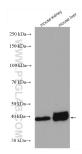
GSNOR, ADH5 Polyclonal antibody

Catalog Number:11051-1-AP

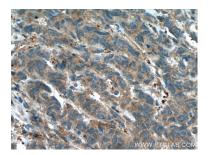
Featured Product 42 Publications


Antibodies | ELISA kits | Proteins www.ptglab.com

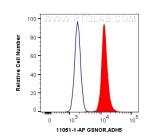
Basic Information	Catalog Number: 11051-1-AP	GenBank Accession Number: BC070491		Purification Method: Antigen affinity purification					
	Size: 150ul, Concentration: 500 ug/ml by Nanodrop; Source: Rabbit Isotype: IgG Immunogen Catalog Number: AG1533	GeneID (NCBI):		Recommended Dilutions: WB 1:1000-1:8000 IP 0.5-4.0 ug for 1.0-3.0 mg of total protein lysate IHC 1:50-1:500 IF/ICC 1:50-1:500					
					Observed MW: 40 kDa				
					Applications	Tested Applications: WB, IHC, IF/ICC, FC (Intra), IP, ELISA	Positive Controls:		
						Cited Applications:		WB : mouse liver tissue, rat liver tissue, mouse kidney tissue	
						WB, IHC, IF, IP			IP : mouse liver tissue, IHC : human prostate cancer tissue, human colon tissu
		Species Specificity:							
numan, mouse, rat		IF/ICC : HepC							
Cited Species: human, mouse, rat, pig, chicken, zebrafish									
TE buffer pH 9.0; (*) Alternatively, antigen retrieval may be performed with citrate buffer pH 6.0									
Background Information	mediates multiple cardiovascular fu	subfamily. It is rem a primary alcohols nctions. It plays in	narkably ineffective and the oxidation o regulating heteroce	•					
	dehydrogenase family and Class-III : catalyzes the oxidation of long-chair mediates multiple cardiovascular fur (PMID:21071693). ADH5 immunostai cells(PMID:22117533).	subfamily. It is rem n primary alcohols nctions. It plays in ning is distributed	narkably ineffective and the oxidation o regulating heteroce	in oxidizing ethanol, but it readily fS-(hydroxymethyl) glutathione. ADH5 llular communication in the artery wall and cytoplasm of the retinal ganglion					
	dehydrogenase family and Class-III : catalyzes the oxidation of long-chair mediates multiple cardiovascular fu (PMID:21071693). ADH5 immunostai cells(PMID:22117533). Author Pu	subfamily. It is rem a primary alcohols nctions. It plays in ning is distributed	narkably ineffective and the oxidation o regulating heteroce in both the nucleus	in oxidizing ethanol, but it readily f S-(hydroxymethyl) glutathione. ADH5 llular communication in the artery wall					
	dehydrogenase family and Class-III : catalyzes the oxidation of long-chair mediates multiple cardiovascular fur (PMID:21071693). ADH5 immunostai cells(PMID:22117533). Author Pu Nadzeya V Marozkina 25	subfamily. It is rem n primary alcohols nctions. It plays in ning is distributed bmed ID	narkably ineffective and the oxidation o regulating heteroce in both the nucleus Journal	in oxidizing ethanol, but it readily fS-(hydroxymethyl) glutathione. ADH5 llular communication in the artery wall. and cytoplasm of the retinal ganglion Application					
	dehydrogenase family and Class-III : catalyzes the oxidation of long-chair mediates multiple cardiovascular fur (PMID:21071693). ADH5 immunostai cells(PMID:22117533). Author Pu Nadzeya V Marozkina 25 Felix A Dingler 33	subfamily. It is rem n primary alcohols nctions. It plays in ning is distributed bomed ID : 359343 I 147438 I	narkably ineffective and the oxidation o regulating heteroce in both the nucleus Journal Eur Respir J	in oxidizing ethanol, but it readily fS-(hydroxymethyl) glutathione. ADH5 llular communication in the artery wall and cytoplasm of the retinal ganglion Application WB, IHC					
	dehydrogenase family and Class-III : catalyzes the oxidation of long-chair mediates multiple cardiovascular fur (PMID:21071693). ADH5 immunostai cells(PMID:22117533). Author Pu Nadzeya V Marozkina 25 Felix A Dingler 33	subfamily. It is rem n primary alcohols nctions. It plays in ning is distributed bomed ID : 359343 I 147438 I	narkably ineffective and the oxidation o regulating heteroce in both the nucleus Journal Eur Respir J Mol Cell	in oxidizing ethanol, but it readily fS-(hydroxymethyl) glutathione. ADH5 llular communication in the artery wall and cytoplasm of the retinal ganglion Application WB, IHC WB,IHC					
Notable Publications	dehydrogenase family and Class-III : catalyzes the oxidation of long-chair mediates multiple cardiovascular fur (PMID:21071693). ADH5 immunostai cells(PMID:22117533). Author Pu Nadzeya V Marozkina 25 Felix A Dingler 33	subfamily. It is rem n primary alcohols inctions. It plays in ning is distributed isobmed ID : isobmed ID : i	narkably ineffective and the oxidation o regulating heteroce in both the nucleus Journal Eur Respir J Mol Cell J Biol Chem	in oxidizing ethanol, but it readily fS-(hydroxymethyl) glutathione. ADH5 llular communication in the artery wall and cytoplasm of the retinal ganglion Application WB, IHC WB,IHC					
Notable Publications	dehydrogenase family and Class-III : catalyzes the oxidation of long-chair mediates multiple cardiovascular fur (PMID:21071693). ADH5 immunostai cells(PMID:22117533). Author Pu Nadzeya V Marozkina 25 Felix A Dingler 33 Colin T Stomberski 31 Storage: Stora et -20°C. Stable for one year aft Storage Buffer:	subfamily. It is rem n primary alcohols nctions. It plays in ning is distributed (bmed ID) (359343 I (447438 I (649033 C (cer shipment. (bmed ID) (cer shipment.	narkably ineffective and the oxidation o regulating heteroce in both the nucleus Journal Eur Respir J Mol Cell J Biol Chem	in oxidizing ethanol, but it readily fS-(hydroxymethyl) glutathione. ADH5 llular communication in the artery wall and cytoplasm of the retinal ganglion Application WB, IHC WB,IHC					
Background Information Notable Publications Storage *** 20ul sizes contain 0.1% BSA	dehydrogenase family and Class-III : catalyzes the oxidation of long-chair mediates multiple cardiovascular fur (PMID:21071693). ADH5 immunostai cells(PMID:22117533). Author Put Nadzeya V Marozkina 25 Felix A Dingler 33 Colin T Stomberski 31 Storage: Storage Buffer: PBS with 0.02% sodium azide and 50	subfamily. It is rem n primary alcohols nctions. It plays in ning is distributed (bmed ID) (359343 I (447438 I (649033 C (cer shipment. (bmed ID) (cer shipment.	narkably ineffective and the oxidation o regulating heteroce in both the nucleus Journal Eur Respir J Mol Cell J Biol Chem	in oxidizing ethanol, but it readily fS-(hydroxymethyl) glutathione. ADH Ilular communication in the artery wa and cytoplasm of the retinal ganglion Application WB, IHC WB,IHC					

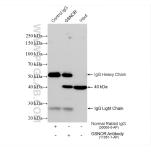

T: 1 (888) 4PTGLAB (1-888-478-4522) (toll free in USA), or 1(312) 455-8498 (outside USA) III free W: ptglab.com

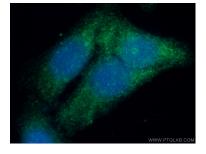
This product is exclusively available under Proteintech Group brand and is not available to purchase from any other manufacturer.


Selected Validation Data

Various lysates were subjected to SDS PAGE followed by western blot with 11051-1-AP (GSNOR,ADH5 antibody) at dilution of 1:4000 incubated at room temperature for 1.5 hours.


mouse liver tissue were subjected to SDS PAGE followed by western blot with 11051-1-AP (GSNOR,ADH5 antibody) at dilution of 1:500 incubated at room temperature for 1.5 hours.


Immunohistochemical analysis of paraffinembedded human prostate cancer tissue slide using 11051-1-AP (GSNOR,ADH5 antibody) at dilution of 1:200 (under 10x lens. Heat mediated antigen retrieval with Tris-EDTA buffer (pH 9.0).


Immunohistochemical analysis of paraffinembedded human prostate cancer tissue slide using 11051-1-AP (GSNOR,ADH5 antibody) at dilution of 1:200 (under 40x lens. Heat mediated antigen retrieval with Tris-EDTA buffer (pH 9.0).

1X10^6 K-562 cells were intracellularly stained with 0.4 ug Anti-Human GSNOR,ADH5 (11051-1-AP) and CoraLite@488-Conjugated AffiniPure Goat Anti-Rabbit 1gG(H+L) at dilution 1:1000 (red), or 0.4 ug Isotype Control. Cells were fixed with 4% PFA and permeabilized with Flow Cytometry Perm Buffer (PF00011-C).

IP result of anti-GSNOR,ADH5 (IP:11051-1-AP, 4ug; Detection:11051-1-AP 1:5000) with mouse liver tissue lysate 1840 ug.

Immunofluorescent analysis of (-20°C Ethanol) fixed HepG2 cells using 11051-1-AP (GSNOR,ADH5 antibody) at dilution of 1:50 and Alexa Fluor 488conjugated AffiniPure Goat Anti-Rabbit IgG(H+L).

Immunohistochemical analysis of paraffinembedded human colon tissue slide using 11051-1-AP (GSNOR,ADH5 antibody) at dilution of 1:800 (under 20x lens). Heat mediated antigen retrieval with Tris-EDTA buffer (pH 9.0).