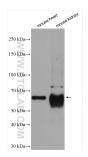
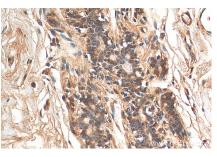
For Research Use Only

PARP3 Polyclonal antibody Catalog Number:11289-1-AP Featured Product 3 Publications

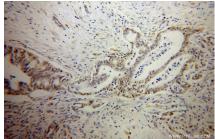
R oroteintech Antibodies | ELISA kits | Proteins www.ptglab.com

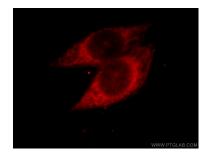

Basic Information	Catalog Number: 11289-1-AP	GenBank Accession Number: BC014260	Purification Method: Antigen affinity purification	
	Size: 150ul , Concentration: 280 ug/ml by Nanodrop and 220 ug/ml by Bradford method using BSA as the standard;	GeneID (NCBI):	Recommended Dilutions:	
		10039	WB 1:500-1:3000	
		UNIPROT ID: Q9Y6F1	IHC 1:50-1:500 IF/ICC 1:10-1:100	
	Source: Rabbit Isotype: IgG Immunogen Catalog Number: AG1844	Full Name: poly (ADP-ribose) polymerase family, member 3		
				Calculated MW: 60 kDa
		Observed MW: 60-62 kDa		
		Applications	11 March 11 March 12	
WB, IHC, IF/ICC, ELISA Cited Applications: WB Species Specificity: human, mouse, rat			VB : mouse heart tissue, human heart tissue, human tidney tissue, rat heart tissue, mouse kidney tissue HC : human breast cancer tissue, human pancreas tancer tissue, human renal cell carcinoma tissue	
Cited Species: human	IF/ICC : H		iela cells,	
Note-IHC: suggested antigen r TE buffer pH 9.0; (*) Alternativ	vely, antigen			
	retrieval may be performed w buffer pH 6.0	ith citrate		
Background Information	buffer pH 6.0 PARP3 (Poly(ADP-ribose) polymerase a post-translational modification of p genome integrity, transcription, diffe protein containing an N-terminal WG domain. PARP3 has been described to	: 3), also known as ARTD3, is the t roteins to promote, control or adj rentiation, cell metabolism or cel R (tryptophan-, glycine-, and argir i interact with partners belonging	ust numerous cellular events including l death (PMID: 31095444). PARP3 is a 60-kD	
	buffer pH 6.0 PARP3 (Poly(ADP-ribose) polymerase a post-translational modification of p genome integrity, transcription, diffe protein containing an N-terminal WG domain. PARP3 has been described to DNA ligase IV, Ku70 and Ku80 and to concert with APLF (PMID: 24598253).	: 3), also known as ARTD3, is the t roteins to promote, control or adj rentiation, cell metabolism or cel R (tryptophan-, glycine-, and argir i interact with partners belonging	ust numerous cellular events including I death (PMID: 31095444). PARP3 is a 60-kD inne-rich) domain and a C-terminal catalyti to the NHEJ pathway including DNA-PKcs, mediated ligation of chromosomal DSB in	
	buffer pH 6.0 PARP3 (Poly(ADP-ribose) polymerase a post-translational modification of p genome integrity, transcription, diffe protein containing an N-terminal WG domain. PARP3 has been described to DNA ligase IV, Ku70 and Ku80 and to concert with APLF (PMID: 24598253). Author Pub	3), also known as ARTD3, is the t proteins to promote, control or adj rentiation, cell metabolism or cel R (tryptophan-, glycine-, and argir interact with partners belonging accelerate XRCC4/DNA ligase IV-	ust numerous cellular events including l death (PMID: 31095444). PARP3 is a 60-kE nine-rich) domain and a C-terminal catalyti to the NHEJ pathway including DNA-PKcs,	
	buffer pH 6.0 PARP3 (Poly(ADP-ribose) polymerase a post-translational modification of p genome integrity, transcription, diffe protein containing an N-terminal WG domain. PARP3 has been described to DNA ligase IV, Ku70 and Ku80 and to concert with APLF (PMID: 24598253). Author Pub Evgeniia Prokhorova	a 3), also known as ARTD3, is the t roteins to promote, control or adj rentiation, cell metabolism or cel R (tryptophan-, glycine-, and argir interact with partners belonging accelerate XRCC4/DNA ligase IV- med ID Journal	ust numerous cellular events including I death (PMID: 31095444). PARP3 is a 60-kD nine-rich) domain and a C-terminal catalyti to the NHEJ pathway including DNA-PKcs, mediated ligation of chromosomal DSB in Application	
	buffer pH 6.0PARP3 (Poly(ADP-ribose) polymerase a post-translational modification of p genome integrity, transcription, diffe protein containing an N-terminal WG domain. PARP3 has been described to DNA ligase IV, Ku70 and Ku80 and to concert with APLF (PMID: 24598253).AuthorPub Evgeniia ProkhorovaAuthorPub Evgeniia ProkhorovaMoriah R Arnold364	a 3), also known as ARTD3, is the to roteins to promote, control or adjurentiation, cell metabolism or cel R (tryptophan-, glycine-, and argin o interact with partners belonging accelerate XRCC4/DNA ligase IV- ormed ID Journal 19811 Mol Cell	ust numerous cellular events including I death (PMID: 31095444). PARP3 is a 60-kE nine-rich) domain and a C-terminal catalyti to the NHEJ pathway including DNA-PKcs, mediated ligation of chromosomal DSB in Application WB	
	buffer pH 6.0PARP3 (Poly(ADP-ribose) polymerase a post-translational modification of p genome integrity, transcription, diffe protein containing an N-terminal WG domain. PARP3 has been described to DNA ligase IV, Ku70 and Ku80 and to concert with APLF (PMID: 24598253).AuthorPub Evgeniia ProkhorovaAuthorPub Evgeniia ProkhorovaMoriah R Arnold364	a 3), also known as ARTD3, is the t proteins to promote, control or adjurentiation, cell metabolism or cel R (tryptophan-, glycine-, and argin interact with partners belonging accelerate XRCC4/DNA ligase IV- omed ID Journal 19811 Mol Cell 193759 Cell Chem Biol	ust numerous cellular events including I death (PMID: 31095444). PARP3 is a 60-kU nine-rich) domain and a C-terminal catalyti to the NHEJ pathway including DNA-PKcs, mediated ligation of chromosomal DSB in Application WB WB	
Notable Publications	buffer pH 6.0PARP3 (Poly(ADP-ribose) polymerase a post-translational modification of p genome integrity, transcription, diffe protein containing an N-terminal WG domain. PARP3 has been described to DNA ligase IV, Ku70 and Ku80 and to concert with APLF (PMID: 24598253).AuthorPub Evgeniia ProkhorovaAuthorPub Evgeniia ProkhorovaMoriah R Arnold364	e 3), also known as ARTD3, is the ti roteins to promote, control or adji rentiation, cell metabolism or cel R (tryptophan-, glycine-, and argin o interact with partners belonging accelerate XRCC4/DNA ligase IV- omed ID Journal 19811 Mol Cell 193759 Cell Chem Biol 1940836 EBioMedicine	ust numerous cellular events including I death (PMID: 31095444). PARP3 is a 60-kU nine-rich) domain and a C-terminal catalyti to the NHEJ pathway including DNA-PKcs, mediated ligation of chromosomal DSB in Application WB WB	
Background Information Notable Publications Storage	buffer pH 6.0 PARP3 (Poly(ADP-ribose) polymerase a post-translational modification of p genome integrity, transcription, diffe protein containing an N-terminal WG domain. PARP3 has been described to DNA ligase IV, Ku70 and Ku80 and to concert with APLF (PMID: 24598253). Author Pub Evgeniia Prokhorova Author Pub Evgeniia Prokhorova Storage: Storage: Storage Buffer: Storage Buffer:	e 3), also known as ARTD3, is the ti roteins to promote, control or adji rentiation, cell metabolism or cel R (tryptophan-, glycine-, and argin o interact with partners belonging accelerate XRCC4/DNA ligase IV- omed ID Journal 19811 Mol Cell 193759 Cell Chem Biol 640836 EBioMedicine er shipment.	l death (PMID: 31095444). PARP3 is a 60-kD inne-rich) domain and a C-terminal catalyti to the NHEJ pathway including DNA-PKcs, mediated ligation of chromosomal DSB in Application WB WB	

in USA), or 1(312) 455-8498 (outside USA)

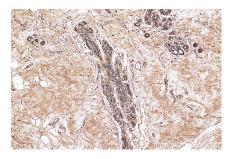

ב. proterntecn@ptg W: ptglab.com

other manufacturer.


Selected Validation Data


Various lysates were subjected to SDS PAGE followed by western blot with 11289-1-AP (PARP3 antibody) at dilution of 1:1500 incubated at room temperature for 1.5 hours.


Immunohistochemical analysis of paraffinembedded human breast cancer tissue slide using 11289-1-AP (PARP3 antibody) at dilution of 1:200 (under 40x lens). Heat mediated antigen retrieval with Tris-EDTA buffer (pH 9.0).


Immunohistochemical analysis of paraffinembedded human pancreas cancer using 11289-1-AP (PARP3 antibody) at dilution of 1:50 (under 10x lens).

Immunofluorescent analysis of Hela cells, using PARP3 antibody 11289-1-AP at 1:25 dilution and Rhodamine-labeled goat anti-rabbit IgG (red).

human kidney tissue were subjected to SDS PAGE followed by western blot with 11289-1-AP (PARP3 antibody) at dilution of 1:500 incubated at room temperature for 1.5 hours.

Immunohistochemical analysis of paraffinembedded human breast cancer tissue slide using 11289-1-AP (PARP3 antibody) at dilution of 1:200 (under 10x lens). Heat mediated antigen retrieval with Tris-EDTA buffer (pH 9.0).

Immunohistochemical analysis of paraffinembedded human renal cell carcinoma tissue slide using 11289-1-AP (PARP3 antibody) at dilution of 1:200 (under 10x lens). Heat mediated antigen retrieval with Tris-EDTA buffer (pH 9.0).