For Research Use Only

TOP3A Polyclonal antibody

Catalog Number:14525-1-AP

Featured Product 29 Publications

Basic Information	Catalog Number: 14525-1-AP	GenBank Accession Number: BC051748	Purification Method: Antigen affinity purification
	Size:	GenelD (NCBI):	Recommended Dilutions:
	150ul , Concentration: 1000 ug/ml by		WB 1:500-1:2400
	Nanodrop and 433 ug/ml by Bradford method using BSA as the standard;	UNITROTTE.	IP 0.5-4.0 ug for 1.0-3.0 mg of total protein lysate
	Source:	Q13472	proteintysate
	Rabbit	Full Name: topoisomerase (DNA) III alpha	
	Isotype:	Calculated MW:	
	IgG	1001 aa, 112 kDa	
	Immunogen Catalog Number: AG6010	Observed MW: 100-110 kDa	
Applications	Tested Applications:	Positive	Controls:
	WB, IP, ELISA	WB : K-562 cells, HL-60 cells	
	Cited Applications: WB, IHC, IP	IP : K-562 cells,	
	Species Specificity:		
	human		
	Cited Species:		
	human, mouse, xenopus		
Background Information	human, mouse, xenopus DNA topoisomerase 3-alpha (TOP3A) processing of homologous recombina supercoiling and torsional tension of cleaving and rejoining one strand of i target site in duplex DNA. The scissilu in the formation of a DNA-(5'-phospho free DNA strand than undergoes pass	ation intermediates to limit DNA DNA introduced during the DNA r the DNA duplex. Introduces a sing e phosphodiester is attacked by t otyrosyl)-enzyme intermediate a age around the unbroken strand t s the covalent intermediate to ex	nd the expulsion of a 3'-OH DNA strand. The hus removing DNA supercoils. Finally, in the spel the active-site tyrosine and restore the
	human, mouse, xenopus DNA topoisomerase 3-alpha (TOP3A) processing of homologous recombina supercoiling and torsional tension of cleaving and rejoining one strand of i target site in duplex DNA. The scissilu in the formation of a DNA-(5'-phospho free DNA strand than undergoes pass religation step, the DNA 3'-OH attack DNA phosphodiester backbone. This a	ation intermediates to limit DNA DNA introduced during the DNA r the DNA duplex. Introduces a sing e phosphodiester is attacked by t otyrosyl)-enzyme intermediate a age around the unbroken strand t s the covalent intermediate to ex	crossover formation in cells. It releases the eplication and transcription by transiently gle-strand break via transesterification at a he catalytic tyrosine of the enzyme, resultir nd the expulsion of a 3'-OH DNA strand. The hus removing DNA supercoils. Finally, in the spel the active-site tyrosine and restore the
	human, mouse, xenopus DNA topoisomerase 3-alpha (TOP3A) processing of homologous recombina supercoiling and torsional tension of cleaving and rejoining one strand of target site in duplex DNA. The scissil in the formation of a DNA-(5'-phosphi free DNA strand than undergoes pass religation step, the DNA 3'-OH attack DNA phosphodiester backbone. This a	ation intermediates to limit DNA DNA introduced during the DNA r the DNA duplex. Introduces a sing e phosphodiester is attacked by t otyrosyl)-enzyme intermediate a age around the unbroken strand t s the covalent intermediate to ex antibody is specific to react with t	crossover formation in cells. It releases the eplication and transcription by transiently gle-strand break via transesterification at a he catalytic tyrosine of the enzyme, resultir nd the expulsion of a 3'-OH DNA strand. The hus removing DNA supercoils. Finally, in the pel the active-site tyrosine and restore the the 110kd human TOP3A.
Background Information	human, mouse, xenopus DNA topoisomerase 3-alpha (TOP3A) processing of homologous recombina supercoiling and torsional tension of cleaving and rejoining one strand of i target site in duplex DNA. The scissile in the formation of a DNA-(5'-phospho free DNA strand than undergoes pass religation step, the DNA 3'-OH attack DNA phosphodiester backbone. This a Author Put Dharm S Patel 289	ation intermediates to limit DNA DNA introduced during the DNA introduced during the DNA of the DNA duplex. Introduces a single phosphodiester is attacked by to otyrosyl)-enzyme intermediate a age around the unbroken strand t is the covalent intermediate to ex- antibody is specific to react with the pomed ID Journal	crossover formation in cells. It releases the eplication and transcription by transiently gle-strand break via transesterification at a he catalytic tyrosine of the enzyme, resultir nd the expulsion of a 3'-OH DNA strand. The hus removing DNA supercoils. Finally, in the spel the active-site tyrosine and restore the the 110kd human TOP3A. Application
	human, mouse, xenopus DNA topoisomerase 3-alpha (TOP3A) processing of homologous recombina supercoiling and torsional tension of cleaving and rejoining one strand of it target site in duplex DNA. The scissile in the formation of a DNA-(5'-phosphe free DNA strand than undergoes pass; religation step, the DNA 3'-OH attack DNA phosphodiester backbone. This a Author Put Dharm S Patel 289 Emily Yun-Chia Chang 290	ation intermediates to limit DNA DNA introduced during the DNA r the DNA duplex. Introduces a sing e phosphodiester is attacked by t otyrosyl)-enzyme intermediate a age around the unbroken strand t s the covalent intermediate to ex antibody is specific to react with the med ID Journal D12125 J Cell Biol	crossover formation in cells. It releases the eplication and transcription by transiently gle-strand break via transesterification at a he catalytic tyrosine of the enzyme, resultir nd the expulsion of a 3'-OH DNA strand. The hus removing DNA supercoils. Finally, in th pel the active-site tyrosine and restore the the 110kd human TOP3A. Application WB
Notable Publications	human, mouse, xenopus DNA topoisomerase 3-alpha (TOP3A) processing of homologous recombinations supercoiling and torsional tension of cleaving and rejoining one strand of it target site in duplex DNA. The scissility in the formation of a DNA-(5'-phosphotifree DNA strand than undergoes pass; religation step, the DNA 3'-OH attack DNA phosphodiester backbone. This at Dharm S Patel 289 Emily Yun-Chia Chang 290 Wenwen Wu 302 Storage: Store at -20°C. Stable for one year after	ation intermediates to limit DNA DNA introduced during the DNA r the DNA duplex. Introduces a sing e phosphodiester is attacked by to otyrosyl)-enzyme intermediate a age around the unbroken strand t s the covalent intermediate to ex antibody is specific to react with the pred ID Journal 212125 J Cell Biol 242409 J Cell Biol 279242 Cancer Res	crossover formation in cells. It releases the eplication and transcription by transiently gle-strand break via transesterification at a he catalytic tyrosine of the enzyme, resultir nd the expulsion of a 3'-OH DNA strand. The hus removing DNA supercoils. Finally, in th upel the active-site tyrosine and restore the the 110kd human TOP3A. Application WB WB
Notable Publications	human, mouse, xenopus DNA topoisomerase 3-alpha (TOP3A) processing of homologous recombina supercoiling and torsional tension of cleaving and rejoining one strand of i target site in duplex DNA. The scissili in the formation of a DNA-(5'-phosphoffree DNA strand than undergoes pass: religation step, the DNA 3'-OH attack DNA phosphodiester backbone. This a Author Put Dharm S Patel 289 Emily Yun-Chia Chang 290 Wenwen Wu 302 Storage: Storage Muther: Storage Buffer: PBS with 0.02% sodium azide and 50	ation intermediates to limit DNA DNA introduced during the DNA r the DNA duplex. Introduces a sing e phosphodiester is attacked by t otyrosyl)-enzyme intermediate a age around the unbroken strand t s the covalent intermediate to ex antibody is specific to react with the omed ID Journal 212125 J Cell Biol 242409 J Cell Biol 242409 J Cell Biol 279242 Cancer Res	crossover formation in cells. It releases the eplication and transcription by transiently gle-strand break via transesterification at a he catalytic tyrosine of the enzyme, resultir nd the expulsion of a 3'-OH DNA strand. The hus removing DNA supercoils. Finally, in th upel the active-site tyrosine and restore the the 110kd human TOP3A. Application WB WB
	human, mouse, xenopus DNA topoisomerase 3-alpha (TOP3A) processing of homologous recombina supercoiling and torsional tension of cleaving and rejoining one strand of it target site in duplex DNA. The scissili in the formation of a DNA-(5'-phosphoffree DNA strand than undergoes passive religation step, the DNA 3'-OH attack DNA phosphodiester backbone. This at Author Put Dharm S Patel 289 Emily Yun-Chia Chang 290 Wenwen Wu 300 Storage: Storage Store at -20°C. Stable for one year aft Storage Buffer: Storage Buffer:	ation intermediates to limit DNA DNA introduced during the DNA r the DNA duplex. Introduces a sing e phosphodiester is attacked by t otyrosyl)-enzyme intermediate a age around the unbroken strand t s the covalent intermediate to ex antibody is specific to react with the omed ID Journal 212125 J Cell Biol 242409 J Cell Biol 242409 J Cell Biol 279242 Cancer Res	crossover formation in cells. It releases the eplication and transcription by transiently gle-strand break via transesterification at a he catalytic tyrosine of the enzyme, resultin nd the expulsion of a 3'-OH DNA strand. The hus removing DNA supercoils. Finally, in the spel the active-site tyrosine and restore the the 110kd human TOP3A. Application WB WB

For technical support and original validation data for this product please contact: T: 1 (888) 4PTGLAB (1-888-478-4522) (toll free E: proteintech@ptglab.com in USA), or 1(312) 455-8498 (outside USA) W: ptglab.com

This product is exclusively available under Proteintech Group brand and is not available to purchase from any other manufacturer.

Selected Validation Data

K-562 cells were subjected to SDS PAGE followed by western blot with 14525-1-AP (TOP3A antibody) at dilution of 1:1000 incubated at room temperature for 1.5 hours. IP result of anti-TOP3A (IP:14525-1-AP, 4ug; Detection:14525-1-AP 1:500) with K-562 cells lysate 3600ug.