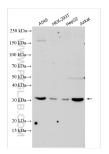
For Research Use Only

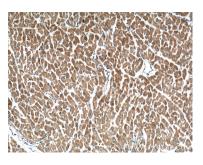
CRLS1-Specific Polyclonal antibody

Catalog Number:14845-1-AP

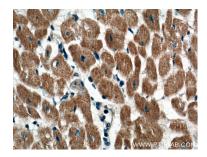
Featured Product

11 Publications


Antibodies | ELISA kits | Proteins www.ptglab.com


Basic Information	Catalog Number: 14845-1-AP	GenBank Accession N NM_019095	umber:	Purification Method: Antigen affinity purification	
	Size:	GenelD (NCBI): 54675		Recommended Dilutions: WB 1:500-1:3000 IHC 1:50-1:500	
	150ul , Concentration: 400 ug/ml by Nanodrop and 300 ug/ml by Bradford				
	method using BSA as the standard;	UNIPROT ID: Q9UJA2		Inc 1.30-1.300	
	Source: Rabbit	Full Name: cardiolipin synthase :	1		
	Isotype: IgG	Calculated MW: 33 kDa			
		Observed MW: 32 kDa			
Applications	Tested Applications: WB, IHC, ELISA		Positive Cor	tive Controls:	
	Cited Applications:	Cited Applications: cells WB, IF IHC : hun		lls, HEK-293T cells, HepG2 cells, Jurkat	
				IHC : human heart tissue, human liver cancer tissue,	
	Species Specificity: human		human skeletal muscle tissue		
	Cited Species: human, rat, mouse				
	Note-IHC: suggested antigen retrieval with TE buffer pH 9.0; (*) Alternatively, antigen retrieval may be performed with citrate buffer pH 6.0				
Background Information	buffer pH 6.0 Cardiolipin (CL) is a mitochondrial-sp regulating bioenergetic efficiency. In catalyzes the reversible phosphatidy and glycerol. Recently it has been rep improves mitochondrial function, mo during diabetes, thereby identifying	ith citrate becific double negative eukaryotes, CL is synth group transfer from or oorted that transgenic e dulates mitochondrial CRLS1 as a novel theraj molecular weight of CF	hesized by car ne phosphatid xpression of C signaling, and peutic target to RLS1 is around	diolipin synthase (CRLS1 or CLS1) which ylglycerol molecule to another to form C RLS1 accelerates cardiolipin remodelin l attenuates mitochondrial dysfunction o attenuate mitochondrial dysfunction in 32-35 kDa, while a 50 kDa protein with	
	buffer pH 6.0 Cardiolipin (CL) is a mitochondrial-sp regulating bioenergetic efficiency. In catalyzes the reversible phosphatidy and glycerol. Recently it has been rep improves mitochondrial function, mo during diabetes, thereby identifying diabetic myocardium. The predicted CRLS1 activity had been observed in	ith citrate becific double negative eukaryotes, CL is synth group transfer from or oorted that transgenic e dulates mitochondrial CRLS1 as a novel theraj molecular weight of CF	hesized by car ne phosphatid expression of C signaling, and peutic target to LS1 is around nay represent	diolipin synthase (CRLS1 or CLS1) which ylglycerol molecule to another to form C RLS1 accelerates cardiolipin remodelin l attenuates mitochondrial dysfunction o attenuate mitochondrial dysfunction in 32-35 kDa, while a 50 kDa protein with	
	buffer pH 6.0 Cardiolipin (CL) is a mitochondrial-sp regulating bioenergetic efficiency. In catalyzes the reversible phosphatidy and glycerol. Recently it has been rep improves mitochondrial function, mo during diabetes, thereby identifying diabetic myocardium. The predicted CRLS1 activity had been observed in Author Pt	ith citrate becific double negative eukaryotes, CL is synti l group transfer from or borted that transgenic e dulates mitochondrial CRLS1 as a novel therap molecular weight of CF liver isolation, which n	hesized by car ne phosphatid expression of C signaling, and peutic target to LS1 is around nay represent	diolipin synthase (CRLS1 or CLS1) which ylglycerol molecule to another to form C RLS1 accelerates cardiolipin remodelin lattenuates mitochondrial dysfunction in 32-35 kDa, while a 50 kDa protein with an isoform of CRLS1 (20652826).	
Background Information	buffer pH 6.0 Cardiolipin (CL) is a mitochondrial-sp regulating bioenergetic efficiency. In catalyzes the reversible phosphatidy and glycerol. Recently it has been rep improves mitochondrial function, mo during diabetes, thereby identifying diabetic myocardium. The predicted CRLS1 activity had been observed in Author Pu Laure Peyta 26	ith citrate becific double negative eukaryotes, CL is synti l group transfer from or borted that transgenic e dulates mitochondrial CRLS1 as a novel theraj molecular weight of CF liver isolation, which n bord ID Jour 5327596 Bioc	hesized by car he phosphatid expression of C signaling, and peutic target to RLS1 is around nay represent	o attenuate mitochondrial dysfunction ir 32-35 kDa, while a 50 kDa protein with an isoform of CRLS1 (20652826). Application	
	buffer pH 6.0 Cardiolipin (CL) is a mitochondrial-spregulating bioenergetic efficiency. In catalyzes the reversible phosphatidy and glycerol. Recently it has been reprimproves mitochondrial function, moduring diabetes, thereby identifying diabetic myocardium. The predicted CRLS1 activity had been observed in Author Put Laure Peyta Lei Wu 33	ith citrate becific double negative eukaryotes, CL is synti l group transfer from or outed that transgenic e dulates mitochondrial CRLS1 as a novel theraj molecular weight of CF liver isolation, which n isolation, which n isolation, which n isolation, which n	hesized by car ne phosphatid expression of C signaling, and peutic target to RLS1 is around nay represent nal him Biophys A	diolipin synthase (CRLS1 or CLS1) which /lglycerol molecule to another to form (RLS1 accelerates cardiolipin remodelin l attenuates mitochondrial dysfunction i 32-35 kDa, while a 50 kDa protein with an isoform of CRLS1 (20652826). Application cta WB	
	buffer pH 6.0 Cardiolipin (CL) is a mitochondrial-spregulating bioenergetic efficiency. In catalyzes the reversible phosphatidy and glycerol. Recently it has been reprimproves mitochondrial function, moduring diabetes, thereby identifying diabetic myocardium. The predicted CRLS1 activity had been observed in Author Put Laure Peyta Lei Wu 33	ith citrate becific double negative eukaryotes, CL is synt l group transfer from or borted that transgenic e dulates mitochondrial CRLS1 as a novel theraj molecular weight of CF liver isolation, which n bmed ID Jour 5327596 Bioco 5129969 J Nur 100455 Neur er shipment.	hesized by car he phosphatid expression of C signaling, and peutic target to RLS1 is around nay represent nal him Biophys A tr Biochem	diolipin synthase (CRLS1 or CLS1) which ylglycerol molecule to another to form (RLS1 accelerates cardiolipin remodelin l attenuates mitochondrial dysfunction o o attenuate mitochondrial dysfunction i 32-35 kDa, while a 50 kDa protein with an isoform of CRLS1 (20652826). Application cta WB WB	
Notable Publications	buffer pH 6.0 Cardiolipin (CL) is a mitochondrial-spregulating bioenergetic efficiency. In catalyzes the reversible phosphatidy and glycerol. Recently it has been reprimproves mitochondrial function, moduring diabetes, thereby identifying di	ith citrate becific double negative eukaryotes, CL is synt l group transfer from or ported that transgenic e dulates mitochondrial CRLS1 as a novel theraj molecular weight of CF liver isolation, which n ibmed ID Jour i327596 Bioco i129969 J Nur i100455 Neur er shipment. % glycerol pH 7.3.	hesized by car he phosphatid expression of C signaling, and peutic target to RLS1 is around nay represent nal him Biophys A tr Biochem	diolipin synthase (CRLS1 or CLS1) which ylglycerol molecule to another to form (RLS1 accelerates cardiolipin remodelin l attenuates mitochondrial dysfunction o o attenuate mitochondrial dysfunction i 32-35 kDa, while a 50 kDa protein with an isoform of CRLS1 (20652826). Application cta WB WB	

T: 1 (888) 4PTGLAB (1-888-478-4522) (toll free E: p in USA), or 1(312) 455-8498 (outside USA) W:


E: proteintech@ptglab.com W: ptglab.com This product is exclusively available under Proteintech Group brand and is not available to purchase from any other manufacturer.

Selected Validation Data

Various lysates were subjected to SDS PAGE followed by western blot with 14845-1-AP (CRLS1-Specific antibody) at dilution of 1:1500 incubated at room temperature for 1.5 hours. Immunohistochemical analysis of paraffinembedded human heart tissue slide using 14845-1-AP (CRLS1-Specific Antibody) at dilution of 1:200 (under 10x lens).

Immunohistochemical analysis of paraffinembedded human heart tissue slide using 14845-1-AP (CRLS1-Specific Antibody) at dilution of 1:200 (under 40x lens).