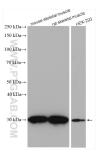
For Research Use Only

CA3 Polyclonal antibody Catalog Number: 15197-1-AP Featured Produce

Featured Product

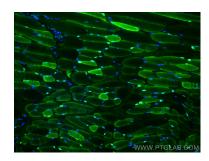

Basic Information	Catalog Number: 15197-1-AP	GenBank Accession Number BC004897	er: Purification Me Antigen affinit		
	Size:	GenelD (NCBI):	0	Recommended Dilutions:	
	150ul , Concentration: 600 ug/ml by Nanodrop and 300 ug/ml by Bradford method using BSA as the standard;	761		WB 1:2000-1:16000	
		UNIPROT ID: P07451	IHC 1:200-1:1000 IF-P 1:50-1:500		
	Source: Rabbit Isotype: IgG Immunogen Catalog Number: AG7344	Full Name: carbonic anhydrase III, mu	scle		
		specific			
		Calculated MW: 29 kDa			
		Observed MW:			
		30 kDa			
Applications	Tested Applications:	Positive Controls:			
	and the second se		: HEK-293 cells, mouse ske eletal muscle tissue, HeLa c	193 cells, mouse skeletal muscle tissue, ra Juscle tissue, HeLa cells	
	WB, IHC, IF		IHC : mouse skeletal muscle tissue,		
	numan, mouse, rat			e skeletal muscle tissue, human kidney	
	Cited Species: human, mouse, rat				
	Note-IHC: suggested antigen retrieval with TE buffer pH 9.0; (*) Alternatively, antigen retrieval may be performed with citrate buffer pH 6.0				
Background Information		belongs to the alpha-carbon ide hydratase activity. It is o own to increase free radical nonstrated to have a carbox tase (PMID: 10064618). CA3	expressed at a very high leve production. In addition to it yl esterase activity and pho was found to be localized it	vel in skeletal muscle ts carbon dioxide osphatase activity, wh in Type-I muscle fiber	
	buffer pH 6.0 Carbonic anhydrase III (CA3), which h exhibits a relatively low carbon diox where physical exercise has been sho hydratase activity, CA3 has been den suggests that it is a tyrosine phospha and could be used as a marker for abr 6221502).	belongs to the alpha-carbon ide hydratase activity. It is o own to increase free radical nonstrated to have a carbox tase (PMID: 10064618). CA3 normal Type-I muscle fibers	expressed at a very high leve production. In addition to it yl esterase activity and pho was found to be localized it	vel in skeletal muscle ts carbon dioxide osphatase activity, wh in Type-I muscle fiber: diseases (PMID:	
	buffer pH 6.0 Carbonic anhydrase III (CA3), which the exhibits a relatively low carbon diox where physical exercise has been show hydratase activity, CA3 has been den suggests that it is a tyrosine phosphar and could be used as a marker for abr 6221502).	belongs to the alpha-carbon ide hydratase activity. It is o own to increase free radical nonstrated to have a carbox tase (PMID: 10064618). CA3 normal Type-I muscle fibers	expressed at a very high leve production. In addition to it yl esterase activity and pho was found to be localized it	vel in skeletal muscle ts carbon dioxide osphatase activity, wh in Type-I muscle fiber diseases (PMID: Application	
Background Information	buffer pH 6.0Carbonic anhydrase III (CA3), which the exhibits a relatively low carbon dioxi where physical exercise has been sho hydratase activity, CA3 has been den suggests that it is a tyrosine phosphar and could be used as a marker for abr 6221502).AuthorPul Claes-Göran Reibring242	belongs to the alpha-carbon ide hydratase activity. It is o wm to increase free radical nonstrated to have a carbox tase (PMID: 10064618). CA3 normal Type-I muscle fibers borned ID Journal 789143 PLoS One	expressed at a very high leve production. In addition to it yl esterase activity and pho was found to be localized it	vel in skeletal muscle ts carbon dioxide osphatase activity, wh in Type-I muscle fiber: diseases (PMID:	
	buffer pH 6.0Carbonic anhydrase III (CA3), which be exhibits a relatively low carbon diox where physical exercise has been sho hydratase activity, CA3 has been den suggests that it is a tyrosine phosphar and could be used as a marker for abr 6221502).AuthorPul Claes-Göran Reibring24:Dennis R. Clayton	belongs to the alpha-carbon ide hydratase activity. It is o wm to increase free radical nonstrated to have a carbox tase (PMID: 10064618). CA3 normal Type-I muscle fibers borned ID Journal 789143 PLoS One	expressed at a very high le production. In addition to in yl esterase activity and pho was found to be localized in several neuromuscular siol Renal Physiol	vel in skeletal muscle ts carbon dioxide osphatase activity, wh in Type-I muscle fiber diseases (PMID: Application IHC	
	buffer pH 6.0 Carbonic anhydrase III (CA3), which the exhibits a relatively low carbon diox where physical exercise has been she hydratase activity, CA3 has been den suggests that it is a tyrosine phosphar and could be used as a marker for abr 6221502). Author Pul Claes-Göran Reibring 24: Dennis R. Clayton 35: Hiroyuki Yamamoto 35: Storage: Storage Buffer:	belongs to the alpha-carbon ide hydratase activity. It is o won to increase free radical nonstrated to have a carbox tase (PMID: 10064618). CA3 normal Type-I muscle fibers Demed ID Journal 789143 PLoS One 834272 Am J Phys 108454 FEBS Ope er shipment.	expressed at a very high le production. In addition to in yl esterase activity and pho was found to be localized in several neuromuscular siol Renal Physiol	vel in skeletal muscle ts carbon dioxide osphatase activity, wh in Type-I muscle fiber diseases (PMID: Application IHC IF	
Notable Publications	buffer pH 6.0 Carbonic anhydrase III (CA3), which be exhibits a relatively low carbon diox where physical exercise has been sho hydratase activity, CA3 has been den suggests that it is a tyrosine phosphar and could be used as a marker for abr 6221502). Author Pul Claes-Göran Reibring Claes-Göran Reibring 24: Dennis R. Clayton 35: Hiroyuki Yamamoto 35: Storage: Storage for one year after the store of the sto	belongs to the alpha-carbon ide hydratase activity. It is o wan to increase free radical nonstrated to have a carbox tase (PMID: 10064618). CA3 normal Type-I muscle fibers Demed ID Journal 789143 PLoS One 834272 Am J Phys 108454 FEBS Ope er shipment. % glycerol, pH7.3	expressed at a very high le production. In addition to in yl esterase activity and pho was found to be localized in several neuromuscular siol Renal Physiol	vel in skeletal muscle ts carbon dioxide osphatase activity, wh in Type-I muscle fiber diseases (PMID: Application IHC IF	

T: 1 (888) 4PTGLAB (1-888-478-4522) (toll free E: proteintech@ptglab.com in USA), or 1(312) 455-8498 (outside USA)

W: ptglab.com

Group brand and is not available to purchase from any other manufacturer.

Selected Validation Data


Various lysates were subjected to SDS PAGE followed by western blot with 15197-1-AP (CA3 antibody) at dilution of 1:8000 incubated at room temperature for 1.5 hours.

Immunohistochemical analysis of paraffinembedded mouse skeletal muscle tissue slide using 15197-1-AP (CA3 antibody) at dilution of 1:1000 (under 10x lens). Heat mediated antigen retrieval with Tris-EDTA buffer (pH 9.0).

Immunohistochemical analysis of paraffinembedded mouse skeletal muscle tissue slide using 15197-1-AP (CA3 antibody) at dilution of 1:1000 (under 40x lens). Heat mediated antigen retrieval with Tris-EDTA buffer (pH 9.0).

Immunofluorescent analysis of (4% PFA) fixed paraffin-embedded mouse skeletal muscle tissue using CA3 antibody (15197-1-AP) at dilution of 1:200 and CoraLite®488-Conjugated Goat Anti-Rabbit IgG(H+L). Heat mediated antigen retrieval with Tris-EDTA buffer (pH 9.0).