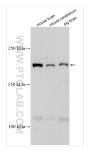
For Research Use Only

SCN9A/Nav1.7-Specific Polyclonal antibody

Catalog Number:20257-1-AP

7 Publications

Basic Information	Catalog Number: 20257-1-AP	GenBank Accession Number: NM_002977	Purification Method: Antigen affinity purification
	Size: 150ul , Concentration: 400 ug/ml by Nanodrop; Source: Rabbit	GenelD (NCBI):	Recommended Dilutions:
		6335	WB 1:500-1:1000
		UNIPROT ID:	IHC 1:50-1:500
		Q15858	
	Isotype:	Full Name: sodium channel, voltage-gated, type IX, alpha subunit	
	IgG		
		Calculated MW: 226 kDa	
		Observed MW: 226 kDa	
Applications	Tested Applications: WB, IHC, ELISA		Controls:
	Cited Applications:	WB : mouse brain tissue, mouse cerebellum tis brain tissue	
	WB, IF		use brain tissue,
	Species Specificity:		
	human, mouse, pig		
	Cited Species: mouse, rat		
	Note-IHC: suggested antigen retrieval with TE buffer pH 9.0; (*) Alternatively, antigen retrieval may be performed with citrate buffer pH 6.0		
	SCN9A, also named as NENA, PN1, ETHA, NE-NA, Nav1.7 and hNE-Na, belongs to the sodium channel family. SCN9A mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, SCN9A forms a sodium-selective channel through which Na+ ions may pass in accordance with their electrochemical gradient. It is a tetrodotoxin-sensitive Na+ channel isoform. SCN9A plays a role in pain mechanisms, especially in the development of inflammatory pain. Defects in SCN9A are the cause of primary erythermalgia or autosomal recessive congenital indifference to pain or paroxysmal extreme pain disorder (PEPD). The antibody is specific to SCN9A		
Background Information	mediates the voltage-dependent soc conformations in response to the vol through which Na+ ions may pass in Na+ channel isoform. SCN9a plays a Defects in SCN9A are the cause of pri	lium ion permeability of excitable tage difference across the membr accordance with their electrochen role in pain mechanisms, especia imary erythermalgia or autosoma	e membranes. Assuming opened or closed ane, SCN9A forms a sodium-selective channe nical gradient. It is a tetrodotoxin-sensitive lly in the development of inflammatory pair l recessive congenital indifference to pain or
	mediates the voltage-dependent soc conformations in response to the vol through which Na+ ions may pass in Na+ channel isoform. SCN9a plays a Defects in SCN9A are the cause of pri paroxysmal extreme pain disorder (f	lium ion permeability of excitable tage difference across the membr accordance with their electrochen role in pain mechanisms, especia imary erythermalgia or autosoma PEPD). The antibody is specific to 1	e membranes. Assuming opened or closed ane, SCN9A forms a sodium-selective channe nical gradient. It is a tetrodotoxin-sensitive Ily in the development of inflammatory pain I recessive congenital indifference to pain or SCN9A
	mediates the voltage-dependent soc conformations in response to the vol through which Na+ ions may pass in Na+ channel isoform. SCN9a plays a Defects in SCN9A are the cause of pri paroxysmal extreme pain disorder (F Author Pub	tium ion permeability of excitable tage difference across the membr accordance with their electrochen role in pain mechanisms, especia imary erythermalgia or autosoma PEPD). The antibody is specific to s med ID Journal	e membranes. Assuming opened or closed ane, SCN9A forms a sodium-selective channe nical gradient. It is a tetrodotoxin-sensitive lly in the development of inflammatory pain l recessive congenital indifference to pain or
Background Information Notable Publications	mediates the voltage-dependent soc conformations in response to the vol through which Na+ ions may pass in Na+ channel isoform. SCN9a plays a Defects in SCN9A are the cause of pri paroxysmal extreme pain disorder (f Author Pub Yi-Zhou Jin 311	tium ion permeability of excitable tage difference across the membr accordance with their electrochen role in pain mechanisms, especia imary erythermalgia or autosoma PEPD). The antibody is specific to s med ID Journal	e membranes. Assuming opened or closed ane, SCN9A forms a sodium-selective channe nical gradient. It is a tetrodotoxin-sensitive Illy in the development of inflammatory pain I recessive congenital indifference to pain or SCN9A Application
	mediates the voltage-dependent soc conformations in response to the vol through which Na+ ions may pass in Na+ channel isoform. SCN9a plays a Defects in SCN9A are the cause of pri paroxysmal extreme pain disorder (FAuthorPub Yi-Zhou JinYi-Zhou Jin311Peng Zhang283	tium ion permeability of excitable tage difference across the membr accordance with their electrochen role in pain mechanisms, especia imary erythermalgia or autosoma PEPD). The antibody is specific to 1 med ID Journal 52853 Neurosci Lett	e membranes. Assuming opened or closed ane, SCN9A forms a sodium-selective channe nical gradient. It is a tetrodotoxin-sensitive Illy in the development of inflammatory pain I recessive congenital indifference to pain or SCN9A Application WB,IF
Notable Publications	mediates the voltage-dependent soc conformations in response to the vol through which Na+ ions may pass in Na+ channel isoform. SCN9a plays a Defects in SCN9A are the cause of pri paroxysmal extreme pain disorder (f Author Pub Yi-Zhou Jin 311 Peng Zhang 283 Rui Yun Bi 269 Storage: Storage Storage Starage Star	tium ion permeability of excitable tage difference across the membr accordance with their electrochen role in pain mechanisms, especia imary erythermalgia or autosoma PEPD). The antibody is specific to 1 med ID Journal 52853 Neurosci Lett 49234 Inflammation 81605 Chin J Dent Res ter shipment.	e membranes. Assuming opened or closed ane, SCN9A forms a sodium-selective channe nical gradient. It is a tetrodotoxin-sensitive Ily in the development of inflammatory pair I recessive congenital indifference to pain or SCN9A Application WB,IF WB
	mediates the voltage-dependent soc conformations in response to the vol through which Na+ ions may pass in Na+ channel isoform. SCN9a plays a Defects in SCN9A are the cause of pri paroxysmal extreme pain disorder (F Author Pub Yi-Zhou Jin 311 Peng Zhang 283 Rui Yun Bi 269 Storage: Storage Storage Buffer:	tium ion permeability of excitable tage difference across the membr accordance with their electrochen role in pain mechanisms, especia imary erythermalgia or autosoma PEPD). The antibody is specific to 1 med ID Journal 52853 Neurosci Lett 49234 Inflammation 81605 Chin J Dent Res ter shipment.	e membranes. Assuming opened or closed ane, SCN9A forms a sodium-selective channe nical gradient. It is a tetrodotoxin-sensitive Ily in the development of inflammatory pain I recessive congenital indifference to pain or SCN9A Application WB,IF WB


T: 1 (888) 4PTGLAB (1-888-478-4522) (toll free E: proteintech@ptglab.com

in USA), or 1(312) 455-8498 (outside USA)

W: ptglab.com

Group brand and is not available to purchase from any other manufacturer.

Selected Validation Data

Various lysates were subjected to SDS PAGE followed by western blot with 20257-1-AP (SCN9A/Nav1.7-Specific antibody) at dilution of 1:500 incubated at room temperature for 1.5 hours. Immunohistochemical analysis of paraffinembedded mouse brain tissue slide using 20257-1-AP (SCN9A/Nav1.7-Specific antibody) at dilution of 1:200 (under 40x lens). Heat mediated antigen retrieval with Tris-EDTA buffer (pH 9.0).