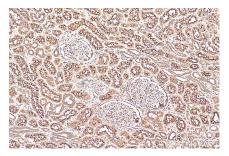
For Research Use Only

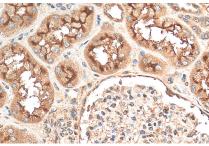
SLC13A2 Polyclonal antibody

Catalog Number:21722-1-AP

Featured Product 4 Publications

blications




Basic Information	Catalog Number: 21722-1-AP	GenBank Accession Number: BC096277	Purification Method: Antigen affinity purification				
	Size: 150ul, Concentration: 700 ug/ml by Nanodrop; Source: Rabbit Isotype: IgG Immunogen Catalog Number: AG16379	GeneID (NCBI):	Recommended Dilutions:				
		9058	IHC 1:50-1:500				
		UNIPROT ID:					
		Q13183 Full Name: solute carrier family 13 (sodium- dependent dicarboxylate transporter),					
				member 2			
				Calculated MW: 592 aa, 64 kDa			
		Applications	Tested Applications:	Positive Controls:			
			IHC, ELISA	IHC : h	IHC : human kidney tissue, mouse kidney tissue		
Cited Applications: WB, IHC Species Specificity: human, mouse Cited Species: human, mouse Note-IHC: suggested antigen retrieval with TE buffer pH 9.0; (*) Alternatively, antigen retrieval may be performed with citrate buffer pH 6.0							
				SLC 13A2 (Solute Carrier Family 13 Member 2) is involved in the transport of citric acid cycle intermediates, such as succinate, citrate, fumarate, and alpha-ketoglutarate (2-oxoglutarate), across cell membranes. In the liver, SLC 13A has been shown to promote metabolic remodeling by transporting citrate, which is then converted to acetyl-CoA, a precursor for cholesterol synthesis and fatty acid metabolism (PMID: 39824985).			
			Background Information	succinate, citrate, fumarate, and alph has been shown to promote metabol	na-ketoglutarate (2-oxoglutarat ic remodeling by transporting c	e), across cell membranes. In the liver, SLC 134 itrate, which is then converted to acetyl-CoA, a	
				succinate, citrate, fumarate, and alph has been shown to promote metabol precursor for cholesterol synthesis ar	na-ketoglutarate (2-oxoglutarat ic remodeling by transporting c	e), across cell membranes. In the liver, SLC 134 itrate, which is then converted to acetyl-CoA, a	
	succinate, citrate, fumarate, and alph has been shown to promote metabol precursor for cholesterol synthesis ar Author Put	na-ketoglutarate (2-oxoglutarat ic remodeling by transporting c nd fatty acid metabolism (PMID omed ID Journal	e), across cell membranes. In the liver, SLC 134 itrate, which is then converted to acetyl-CoA, a 39824985).				
Background Information	succinate, citrate, fumarate, and alph has been shown to promote metabol precursor for cholesterol synthesis ar Author Put Gunars Osis 311	na-ketoglutarate (2-oxoglutarat ic remodeling by transporting c nd fatty acid metabolism (PMID omed ID Journal	e), across cell membranes. In the liver, SLC 13/ itrate, which is then converted to acetyl-CoA, a : 39824985). Application				
	succinate, citrate, fumarate, and alph has been shown to promote metabolic precursor for cholesterol synthesis ar Author Put Gunars Osis 311 Sen Wang 287	a-ketoglutarate (2-oxoglutarat ic remodeling by transporting c ad fatty acid metabolism (PMID omed ID Journal 188034 Am J Physiol 745433 Cancer Med	e), across cell membranes. In the liver, SLC 13/ itrate, which is then converted to acetyl-CoA, a : 39824985). Application Renal Physiol				
	succinate, citrate, fumarate, and alph has been shown to promote metabolic precursor for cholesterol synthesis ar Author Put Gunars Osis 311 Sen Wang 287	a-ketoglutarate (2-oxoglutarat ic remodeling by transporting c ad fatty acid metabolism (PMID omed ID Journal 188034 Am J Physiol 745433 Cancer Med 927654 Am J Physiol ter shipment.	e), across cell membranes. In the liver, SLC 134 itrate, which is then converted to acetyl-CoA, a : 39824985). Application Renal Physiol IHC				
Notable Publications	succinate, citrate, fumarate, and alph has been shown to promote metabolic precursor for cholesterol synthesis ar Author Put Gunars Osis 311 Sen Wang 287 Hyun-Wook Lee 279 Storage: Storage: Storage Buffer:	a-ketoglutarate (2-oxoglutarat ic remodeling by transporting c ad fatty acid metabolism (PMID omed ID Journal 188034 Am J Physiol 745433 Cancer Med 927654 Am J Physiol ter shipment.	e), across cell membranes. In the liver, SLC 134 itrate, which is then converted to acetyl-CoA, a : 39824985). Application Renal Physiol IHC				

For technical support and original validation data for this product please contact:T: 1 (888) 4PTGLAB (1-888-478-4522) (toll freeE: proteintech@ptglab.comin USA), or 1(312) 455-8498 (outside USA)W: ptglab.com

This product is exclusively available under Proteintech Group brand and is not available to purchase from any other manufacturer.

Selected Validation Data

Immunohistochemical analysis of paraffinembedded human kidney tissue slide using 21722-1-AP (SLC 13A2 antibody) at dilution of 1:200 (under 10x lens). Heat mediated antigen retrieval with Tris-EDTA buffer (pH 9.0).

Immunohistochemical analysis of paraffinembedded human kidney tissue slide using 21722-1-AP (SLC 13A2 antibody) at dilution of 1:200 (under 40x lens). Heat mediated antigen retrieval with Tris-EDTA buffer (pH 9.0).

Immunohistochemical analysis of paraffinembedded mouse kidney tissue slide using 21722-1-AP (SLC 13A2 antibody) at dilution of 1:1000 (under 40x lens). Heat mediated antigen retrieval with Tris-EDTA buffer (pH 9.0).