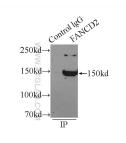
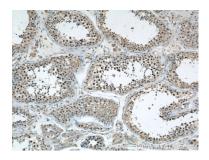
For Research Use Only

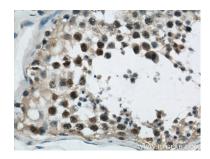

FANCD2 Polyclonal antibody

Catalog Number:24006-1-AP 5 Publications


Antibodies | ELISA kits | Proteins www.ptglab.com

Basic Information	Catalog Number: 24006-1-AP	GenBank Accession Number: NM_033084	Purification Method: Antigen affinity purification					
	Size: 150ul, Concentration: 440 µg/ml by Bradford method using BSA as the standard; Source: Rabbit Isotype: IgG	GeneID (NCBI): 2177 UNIPROT ID: Q9BXW9 Full Name: Fanconi anemia, complementation group D2 Calculated MW: 166 kDa	Recommended Dilutions: WB 1:200-1:1000 IP 0.5-4.0 ug for 1.0-3.0 mg of total protein lysate IHC 1:20-1:200					
				Observed MW: 150-155 kDa				
				Applications	Tested Applications:	Positive Controls: WB : HL-60 cells,		
					WB, IP, IHC, ELISA Cited Applications:			
					WB, IF, IHC		IP : mouse testis tissue, IHC : human testis tissue,	
					Species Specificity: human, mouse	IHC : humar		
		Cited Species: human						
Note-IHC: suggested antigen retrieval with TE buffer pH 9.0; (*) Alternatively, antigen retrieval may be performed with citrate buffer pH 6.0								
Background Information	accurate and efficient pairing of hom breaks, both by homologous recombi checkpoint activation upon DNA dam may also be involved in B-cell immu	ologs during meiosis. FANCD2 is inv nation and single-strand annealing. nage. It promotes BRCA2/FANCD1 loa noglobulin isotype switching. Defect eterogeneous, autosomal recessive of of congenital malformations, and a p	olved in the repair of DNA double-strand It may participate in S phase and G2 phase ading onto damaged chromatin. FANCD2 is in FANCD2 are a cause of Fanconi disorder characterized by progressive redisposition to the development of					
	accurate and efficient pairing of hom breaks, both by homologous recombi checkpoint activation upon DNA dam may also be involved in B-cell immu anemia (FA) which is a genetically h pancytopenia, a diverse assortment t malignancies. The antibody recogniz	ologs during meiosis. FANCD2 is inv nation and single-strand annealing. hage. It promotes BRCA2/FANCD1 loa noglobulin isotype switching. Defect eterogeneous, autosomal recessive of of congenital malformations, and a p te both un-phospho and phospho-Ser(olved in the repair of DNA double-strand It may participate in S phase and G2 phase ading onto damaged chromatin. FANCD2 is in FANCD2 are a cause of Fanconi disorder characterized by progressive redisposition to the development of 330) of FANCD2.					
	accurate and efficient pairing of hom breaks, both by homologous recombi- checkpoint activation upon DNA dam may also be involved in B-cell immu anemia (FA) which is a genetically h pancytopenia, a diverse assortment of malignancies. The antibody recogniz	ologs during meiosis. FANCD2 is inv nation and single-strand annealing. hage. It promotes BRCA2/FANCD1 loa inoglobulin isotype switching. Defect eterogeneous, autosomal recessive of for congenital malformations, and a p te both un-phospho and phospho-Ser(med ID Journal	olved in the repair of DNA double-strand It may participate in S phase and G2 phase ading onto damaged chromatin. FANCD2 is in FANCD2 are a cause of Fanconi disorder characterized by progressive redisposition to the development of					
Background Information	accurate and efficient pairing of hom breaks, both by homologous recombi checkpoint activation upon DNA dam may also be involved in B-cell immu anemia (FA) which is a genetically h pancytopenia, a diverse assortment t malignancies. The antibody recognize Author Pul Yusuke Oku 29	ologs during meiosis. FANCD2 is inv nation and single-strand annealing. hage. It promotes BRCA2/FANCD1 loa inoglobulin isotype switching. Defect eterogeneous, autosomal recessive of of congenital malformations, and a p te both un-phospho and phospho-Ser(olved in the repair of DNA double-strand It may participate in S phase and G2 phase ading onto damaged chromatin. FANCD2 is in FANCD2 are a cause of Fanconi disorder characterized by progressive redisposition to the development of 330) of FANCD2.					
	accurate and efficient pairing of hom breaks, both by homologous recombi- checkpoint activation upon DNA dam may also be involved in B-cell immu anemia (FA) which is a genetically h pancytopenia, a diverse assortment of malignancies. The antibody recognize Author Pul Yusuke Oku 299 Huikai Miao 355	ologs during meiosis. FANCD2 is inv nation and single-strand annealing. hage. It promotes BRCA2/FANCD1 loa noglobulin isotype switching. Defect eterogeneous, autosomal recessive of of congenital malformations, and a p te both un-phospho and phospho-Ser(omed ID Journal 928579 FEBS Open Bio	olved in the repair of DNA double-strand It may participate in S phase and G2 phase ding onto damaged chromatin. FANCD2 is in FANCD2 are a cause of Fanconi disorder characterized by progressive redisposition to the development of 330) of FANCD2. Application WB					
	accurate and efficient pairing of hom breaks, both by homologous recombi- checkpoint activation upon DNA dam may also be involved in B-cell immu- anemia (FA) which is a genetically h pancytopenia, a diverse assortment i malignancies. The antibody recogniz Author Pul Yusuke Oku 299 Huikai Miao 355 Anna Palovcak 370 Storage: Storage Store at -20°C. Stable for one year afficiency Storage Buffer: PBS with 0.02% sodium azide and 500	elogs during meiosis. FANCD2 is inv nation and single-strand annealing. hage. It promotes BRCA2/FANCD1 loc inoglobulin isotype switching. Defect eterogeneous, autosomal recessive of for congenital malformations, and a p te both un-phospho and phospho-Ser med ID Journal 236309 BMC Cancer 520397 Commun Biol	ts in FANCD2 are a cause of Fanconi disorder characterized by progressive redisposition to the development of 330) of FANCD2. Application WB IHC					
Notable Publications	accurate and efficient pairing of hom breaks, both by homologous recombi- checkpoint activation upon DNA dam may also be involved in B-cell immu anemia (FA) which is a genetically h pancytopenia, a diverse assortment of malignancies. The antibody recognize Author Pul Yusuke Oku 299 Huikai Miao 355 Anna Palovcak 370 Storage: Store at -20°C. Stable for one year afficiency of the start of the st	elogs during meiosis. FANCD2 is inv nation and single-strand annealing. hage. It promotes BRCA2/FANCD1 loc inoglobulin isotype switching. Defect eterogeneous, autosomal recessive of for congenital malformations, and a p te both un-phospho and phospho-Ser med ID Journal 236309 BMC Cancer 520397 Commun Biol	olved in the repair of DNA double-strand It may participate in S phase and G2 phase ading onto damaged chromatin. FANCD2 is in FANCD2 are a cause of Fanconi disorder characterized by progressive redisposition to the development of 330) of FANCD2. Application WB IHC					


Selected Validation Data


HL-60 cells were subjected to SDS PAGE followed by western blot with 24006-1-AP (FANCD2 antibody) at dilution of 1:300 incubated at room temperature for 1.5 hours.

IP result of anti-FANCD2 (IP:24006-1-AP, 4ug; Detection:24006-1-AP 1:300) with mouse testis tissue lysate 6000ug.

Immunohistochemical analysis of paraffinembedded human testis using 24006-1-AP (FANCD2 antibody) at dilution of 1:50 (under 10x lens).

Immunohistochemical analysis of paraffinembedded human testis using 24006-1-AP (FANCD2 antibody) at dilution of 1:50 (under 40x lens).