For Research Use Only

Osteopontin Polyclonal antibody Catalog Number:25715-1-AP 35 Publications

Basic Information	Catalog Number: 25715-1-AP	GenBank Accession Number: BC007016	Purification Method: Antigen affinity purification	
	Size:	GenelD (NCBI):	Recommended Dilutions:	
	150ul , Concentration: 650 µg/ml by Nanodrop; Source: Rabbit	6696	WB: 1:500-1:1000	
		UNIPROT ID: P10451	HC: 1:50-1:500	
		Full Name:		
	Isotype:	secreted phosphoprotein 1 Calculated MW: 314 aa, 35 kDa		
	IgG Immunogen Catalog Number: AG22588			
		Observed MW: 66 kDa		
Applications	Tested Applications: WB, IHC, ELISA	Positive	Positive Controls: WB : mouse kidney tissue, HEK-293, rat kidney tissue, HEK-293 cells, C2C12 cells IHC : human stomach cancer tissue, human kidney tissue, human small intestine tissue	
	Cited Applications:			
	WB, IHC, IF Species Specificity: human, mouse, rat			
	Cited Species: human, mouse, rat			
	Note-IHC: suggested antigen retrieval with TE buffer pH 9.0; (*) Alternatively, antigen retrieval may be performed with citrate buffer pH 6.0			
	Osteopontin (OPN), also known as SPP1, is a secreted glycophosphoprotein that belongs to the small integrin- binding ligand N-linked glycoprotein (SIBLING) family. Originally isolated from bone, OPN has been found in kidney, vascular tissues, biological fluids, and various tumor tissues (PMID: 15138464; 16406521). OPN can interact with CD44 and integrins and regulate diverse biological processes. It has a multifaceted role in bone development and remodeling, and is also involved in the inflammatory and immune response, oncogenesis and cancer progression. The very acidic nature of OPN, as well as the presence of variable posttranslational modifications, has led to anomalous migration in SDS-polyacrylamide gels and therefore to reports of different molecular weights for OPN (PMID: 8293561). Depending on the cell and tissue source and/or the SDS-PAGE system, OPN migrates with a molecular weight of 44-80 kDa, as well as at some smaller bands correspond to peptide fragments (PMID: 8195113; 17890765).			
Background Information	binding ligand N-linked glycoproteir kidney, vascular tissues, biological f with CD44 and integrins and regulate and remodeling, and is also involved progression. The very acidic nature o led to anomalous migration in SDS-p OPN (PMID: 8293561). Depending on molecular weight of 44-80 kDa, as w	n (SIBLING) family. Originally isc luids, and various tumor tissues e diverse biological processes. It d in the inflammatory and immu of OPN, as well as the presence of polyacrylamide gels and therefor the cell and tissue source and/o	olated from bone, OPN has been found in (PMID: 15138464; 16406521). OPN can intera has a multifaceted role in bone developmer ne response, oncogenesis and cancer f variable posttranslational modifications, ha re to reports of different molecular weights for r the SDS-PAGE system, OPN migrates with a	
	binding ligand N-linked glycoproteir kidney, vascular tissues, biological f with CD44 and integrins and regulate and remodeling, and is also involved progression. The very acidic nature o led to anomalous migration in SDS-p OPN (PMID: 8293561). Depending on molecular weight of 44-80 kDa, as w 17890765).	n (SIBLING) family. Originally isc luids, and various tumor tissues e diverse biological processes. It d in the inflammatory and immu f OPN, as well as the presence of solyacrylamide gels and therefor the cell and tissue source and/o ell as at some smaller bands cor	blated from bone, OPN has been found in (PMID: 15138464; 16406521). OPN can intera has a multifaceted role in bone developmer ne response, oncogenesis and cancer f variable posttranslational modifications, ha re to reports of different molecular weights for r the SDS-PAGE system, OPN migrates with a respond to peptide fragments (PMID: 819511)	
	binding ligand N-linked glycoproteir kidney, vascular tissues, biological f with CD44 and integrins and regulate and remodeling, and is also involved progression. The very acidic nature o led to anomalous migration in SDS-p OPN (PMID: 8293561). Depending on molecular weight of 44-80 kDa, as we 17890765).	n (SIBLING) family. Originally iso luids, and various tumor tissues e diverse biological processes. It d in the inflammatory and immu of OPN, as well as the presence of polyacrylamide gels and therefor the cell and tissue source and/o ell as at some smaller bands cor bmed ID Journal	blated from bone, OPN has been found in (PMID: 15138464; 16406521). OPN can intera thas a multifaceted role in bone developmer ne response, oncogenesis and cancer f variable posttranslational modifications, ha re to reports of different molecular weights for r the SDS-PAGE system, OPN migrates with a respond to peptide fragments (PMID: 819511 Application	
	binding ligand N-linked glycoproteir kidney, vascular tissues, biological f with CD44 and integrins and regulate and remodeling, and is also involved progression. The very acidic nature o led to anomalous migration in SDS-p OPN (PMID: 8293561). Depending on molecular weight of 44-80 kDa, as w 17890765).	h (SIBLING) family. Originally iso luids, and various tumor tissues e diverse biological processes. It d in the inflammatory and immu f OPN, as well as the presence of toolyacrylamide gels and therefor the cell and tissue source and/o ell as at some smaller bands cor bmed ID Journal 561491 Int J Mol Sci	blated from bone, OPN has been found in (PMID: 15138464; 16406521). OPN can intera : has a multifaceted role in bone developmer ne response, oncogenesis and cancer f variable posttranslational modifications, ha re to reports of different molecular weights for r the SDS-PAGE system, OPN migrates with a respond to peptide fragments (PMID: 819511. Application WB	
	binding ligand N-linked glycoproteir kidney, vascular tissues, biological f with CD44 and integrins and regulate and remodeling, and is also involved progression. The very acidic nature o led to anomalous migration in SDS-p OPN (PMID: 8293561). Depending on molecular weight of 44-80 kDa, as w 17890765). Author Pul Christian Stern 31! Lin Liu 36:	h (SIBLING) family. Originally isc luids, and various tumor tissues le diverse biological processes. It d in the inflammatory and immu f OPN, as well as the presence of polyacrylamide gels and therefor the cell and tissue source and/o ell as at some smaller bands cor bmed ID Journal 561491 Int J Mol Sci 309970 Clin Exp Pharm	blated from bone, OPN has been found in (PMID: 15138464; 16406521). OPN can interact thas a multifaceted role in bone development ne response, oncogenesis and cancer f variable posttranslational modifications, has re to reports of different molecular weights for r the SDS-PAGE system, OPN migrates with a respond to peptide fragments (PMID: 819511) Application WB nacol Physiol WB	
	binding ligand N-linked glycoproteir kidney, vascular tissues, biological f with CD44 and integrins and regulate and remodeling, and is also involved progression. The very acidic nature o led to anomalous migration in SDS-p OPN (PMID: 8293561). Depending on molecular weight of 44-80 kDa, as w 17890765). Author Pul Christian Stern 31! Lin Liu 36:	h (SIBLING) family. Originally iso luids, and various tumor tissues e diverse biological processes. It d in the inflammatory and immu f OPN, as well as the presence of toolyacrylamide gels and therefor the cell and tissue source and/o ell as at some smaller bands cor bmed ID Journal 561491 Int J Mol Sci	blated from bone, OPN has been found in (PMID: 15138464; 16406521). OPN can intera thas a multifaceted role in bone developmer ne response, oncogenesis and cancer f variable posttranslational modifications, ha re to reports of different molecular weights for r the SDS-PAGE system, OPN migrates with a respond to peptide fragments (PMID: 819511) Application WB nacol Physiol WB	
Background Information Notable Publications	binding ligand N-linked glycoproteir kidney, vascular tissues, biological f with CD44 and integrins and regulate and remodeling, and is also involved progression. The very acidic nature o led to anomalous migration in SDS-p OPN (PMID: 8293561). Depending on molecular weight of 44-80 kDa, as w 17890765). Author Pul Christian Stern 311 Lin Liu 360 Xiaopei Wu 334 Storage: Storage Storage St	n (SIBLING) family. Originally iso luids, and various tumor tissues is e diverse biological processes. It d in the inflammatory and immu f OPN, as well as the presence of the cell and tissue source and/o ell as at some smaller bands cor bmed ID Journal 561491 Int J Mol Sci 309970 Clin Exp Pharm 449642 ACS Biomater is the shipment.	blated from bone, OPN has been found in (PMID: 15138464; 16406521). OPN can intera thas a multifaceted role in bone developmer ne response, oncogenesis and cancer f variable posttranslational modifications, ha re to reports of different molecular weights for r the SDS-PAGE system, OPN migrates with a respond to peptide fragments (PMID: 819511) Application WB nacol Physiol WB	
Notable Publications	binding ligand N-linked glycoproteir kidney, vascular tissues, biological f with CD44 and integrins and regulate and remodeling, and is also involvec progression. The very acidic nature o led to anomalous migration in SDS-p OPN (PMID: 8293561). Depending on molecular weight of 44-80 kDa, as w 17890765). Author Pul Christian Stern 31: Lin Liu 36: Xiaopei Wu 33. Storage: Storage: Storage Buffer:	n (SIBLING) family. Originally iso luids, and various tumor tissues is e diverse biological processes. It d in the inflammatory and immu f OPN, as well as the presence of the cell and tissue source and/o ell as at some smaller bands cor bmed ID Journal 561491 Int J Mol Sci 309970 Clin Exp Pharm 449642 ACS Biomater is the shipment.	blated from bone, OPN has been found in (PMID: 15138464; 16406521). OPN can intera thas a multifaceted role in bone developmer ne response, oncogenesis and cancer f variable posttranslational modifications, ha re to reports of different molecular weights for r the SDS-PAGE system, OPN migrates with a respond to peptide fragments (PMID: 819511 Application WB nacol Physiol WB	

Selected Validation Data

mouse kidney tissue were subjected to SDS PAGE followed by western blot with 25715-1-AP (Osteopontin antibody at dilution of 1:600 incubated at room temperature for 1.5 hours. Immunohistochemical analysis of paraffinembedded human stomach cancer tissue slide using 25715-1-AP (Osteopontin antibody at dilution of 1:200 (under 10x lens).

Immunohistochemical analysis of paraffinembedded human stomach cancer tissue slide using 25715-1-AP (Osteopontin antibody at dilution of 1:200 (under 40x lens).

Various lysates were subjected to SDS PAGE followed by western blot with 25715-1-AP (Osteopontin antibody) at dilution of 1:3000 incubated at room temperature for 1.5 hours.