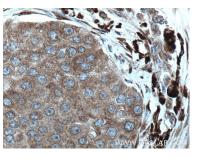

For Research Use Only


STT3A Monoclonal antibody Catalog Number:66581-1-lg Featured Product 4 Publications

Basic Information	Catalog Number: 66581-1-lg	GenBank Accession Number BC020965		Purification Method: Protein G purification CloneNo.: 1E2B12	
	Size:	GenelD (NCBI):			
	150ul , Concentration: 1500 ug/ml by	3703	1E2B12		
	Nanodrop and 1000 ug/ml by Bradford method using BSA as the standard; Source:	^J UNIPROT ID: P46977	Recommended Dilutions: WB 1:1000-1:6000		
		Full Name:	IHC 1:50-1:500		
	Mouse	STT3, subunit of the			
	lsotype: lgG1	oligosaccharyltransferase c homolog A (S. cerevisiae)	omplex,		
	Immunogen Catalog Number: AG27072	Calculated MW: 705 aa, 81 kDa			
		Observed MW: 65 kDa			
Applications	The second se		tive Controls:		
	WB, IHC, ELISA		WB : THP-1 cells, K-562 cells, HL-60 cells, HEK-293 cells, RAW 264.7 cells		
	Cited Applications: WB, IHC, IF				
	Species Specificity: human, mouse, rat		human breast cancer tissue,		
	Cited Species: human				
	Note-IHC: suggested antigen ra TE buffer pH 9.0; (*) Alternativ retrieval may be performed wa buffer pH 6.0	ely, antigen			
	STT3A, also named as Integral membrane protein 1, belongs to the STT3 family. STT3A is expressed at high levels in placenta, liver, muscle and pancreas, and at very low levels in brain, lung and kidney. STT3A is a catalytic subuni of the N-oligosaccharyl transferase (OST) complex which catalyzes the transfer of a high mannose oligosaccharide from a lipid-linked oligosaccharide donor to an asparagine residue within an Asn-X-Ser/Thr consensus motif in nascent polypeptide chains. STT3A is present in the majority of OST complexes and mediates cotranslational N- glycosylation of most sites on target proteins, while STT3B-containing complexes are required for efficient post- translational glycosylation and mediate glycosylation of sites that have been skipped by STT3A. There are two isoforms of STT3A with molecular weight of 81 and 70 kDa. 66581-1-1g antibody detects a protein around 65-70 kDa in SDS-PAGE which is similar to papers published. (PMID: 32005703, 25135935)				
Background Information	of the N-oligosaccharyl transferase (O from a lipid-linked oligosaccharide de nascent polypeptide chains. STT3A is glycosylation of most sites on target p translational glycosylation and media isoforms of STT3A with molecular we	PST) complex which catalyze onor to an asparagine residu present in the majority of O proteins, while STT3B-contai ate glycosylation of sites that ight of 81 and 70 kDa. 66581	s the transfer of a high mannose oligosad e within an Asn-X-Ser/Thr consensus mot ST complexes and mediates cotranslation ning complexes are required for efficient t have been skipped by STT3A. There are -1-Ig antibody detects a protein around 6	tic subun ccharide tif in nal N- t post- e two	
	of the N-oligosaccharyl transferase (C from a lipid-linked oligosaccharide de nascent polypeptide chains. STT3A is glycosylation of most sites on target p translational glycosylation and media isoforms of STT3A with molecular we in SDS-PAGE which is similar to paper	PST) complex which catalyze onor to an asparagine residu present in the majority of O proteins, while STT3B-contai ate glycosylation of sites that ight of 81 and 70 kDa. 66581	s the transfer of a high mannose oligosad e within an Asn-X-Ser/Thr consensus mot ST complexes and mediates cotranslation ning complexes are required for efficient t have been skipped by STT3A. There are -1-1g antibody detects a protein around 6 33, 25135935)	tic subun ticharide tif in nal N- t post- two 5-70 kDa	
	of the N-oligosaccharyl transferase (C from a lipid-linked oligosaccharide du nascent polypeptide chains. STT3A is glycosylation of most sites on target p translational glycosylation and media isoforms of STT3A with molecular we in SDS-PAGE which is similar to paper Author Pub	PST) complex which catalyze onor to an asparagine residu present in the majority of O proteins, while STT3B-contai ate glycosylation of sites the ight of 81 and 70 kDa. 66581 rs published. (PMID: 3200570 med ID Journal	s the transfer of a high mannose oligosad e within an Asn-X-Ser/Thr consensus mot ST complexes and mediates cotranslation ning complexes are required for efficient t have been skipped by STT3A. There are -1-lg antibody detects a protein around 6 (3, 25135935) Applicati	tic subun ticharide tif in nal N- t post- two 5-70 kDa	
	of the N-oligosaccharyl transferase (C from a lipid-linked oligosaccharide de nascent polypeptide chains. STT3A is glycosylation of most sites on target p translational glycosylation and media isoforms of STT3A with molecular we in SDS-PAGE which is similar to paper Author Pub Jiahan Cheng 358	PST) complex which catalyze onor to an asparagine residu present in the majority of O proteins, while STT3B-contai ate glycosylation of sites the ight of 81 and 70 kDa. 66581 rs published. (PMID: 3200570 med ID Journal	s the transfer of a high mannose oligosad e within an Asn-X-Ser/Thr consensus mot ST complexes and mediates cotranslation ning complexes are required for efficient t have been skipped by STT3A. There are -1-Ig antibody detects a protein around 6 (3, 25135935) Applicati Cancer Res IHC	tic subun ticharide tif in nal N- t post- two 5-70 kDa	
	of the N-oligosaccharyl transferase (C from a lipid-linked oligosaccharide du nascent polypeptide chains. STT3A is glycosylation of most sites on target p translational glycosylation and medi- isoforms of STT3A with molecular we in SDS-PAGE which is similar to paper Author Pub Jiahan Cheng 358 Wenchang Lv 354	experience of the second secon	s the transfer of a high mannose oligosad e within an Asn-X-Ser/Thr consensus mot ST complexes and mediates cotranslation ning complexes are required for efficient t have been skipped by STT3A. There are -1-1g antibody detects a protein around 6 (3, 25135935) Applicati Cancer Res IHC Inol IHC,IF	tic subun ticharide tif in nal N- t post- two 55-70 kD	
Background Information	of the N-oligosaccharyl transferase (C from a lipid-linked oligosaccharide du nascent polypeptide chains. STT3A is glycosylation of most sites on target p translational glycosylation and medi- isoforms of STT3A with molecular we in SDS-PAGE which is similar to paper Author Pub Jiahan Cheng 358 Wenchang Lv 354	PST) complex which catalyze conor to an asparagine residu present in the majority of Oporteins, while STT3B-contai ate glycosylation of sites thatight of 81 and 70 kDa. 66581 rs published. (PMID: 3200570 omed ID Journal 322442 Transl Lung 44644 Front Immu	s the transfer of a high mannose oligosad e within an Asn-X-Ser/Thr consensus mot ST complexes and mediates cotranslation ning complexes are required for efficient t have been skipped by STT3A. There are -1-1g antibody detects a protein around 6 (3, 25135935) Applicati Cancer Res IHC nol IHC,IF	tic subur ccharide tif in nal N- t post- two 55-70 kD	
Background Information Notable Publications Storage	of the N-oligosaccharyl transferase (C from a lipid-linked oligosaccharide de nascent polypeptide chains. STT3A is glycosylation of most sites on target p translational glycosylation and medi- isoforms of STT3A with molecular we in SDS-PAGE which is similar to paper Author Pub Jiahan Cheng 358 Wenchang Lv 354 Nan Xiong 397 Storage: Stora at -20°C. Stable for one year after Storage Buffer: PBS with 0.02% sodium azide and 500	PST) complex which catalyze onor to an asparagine residu present in the majority of O proteins, while STT3B-contai ate glycosylation of sites tha ight of 81 and 70 kDa. 66581 rs published. (PMID: 3200570 med ID Journal 32442 Transl Lung 44644 Front Immu 16927 Adv Sci (Wa	s the transfer of a high mannose oligosad e within an Asn-X-Ser/Thr consensus mot ST complexes and mediates cotranslation ning complexes are required for efficient t have been skipped by STT3A. There are -1-1g antibody detects a protein around 6 (3, 25135935) Applicati Cancer Res IHC nol IHC,IF	tic subur ccharide tif in nal N- t post- two 55-70 kD	
Notable Publications	of the N-oligosaccharyl transferase (C from a lipid-linked oligosaccharide de nascent polypeptide chains. STT3A is glycosylation of most sites on target p translational glycosylation and medi- isoforms of STT3A with molecular we in SDS-PAGE which is similar to paper Author Pub Jiahan Cheng 358 Wenchang Lv 354 Nan Xiong 397 Storage: Storage Storage Buffer:	PST) complex which catalyze onor to an asparagine residu present in the majority of O proteins, while STT3B-contai ate glycosylation of sites tha ight of 81 and 70 kDa. 66581 rs published. (PMID: 3200570 med ID Journal 32442 Transl Lung 44644 Front Immu 16927 Adv Sci (Wa	s the transfer of a high mannose oligosad e within an Asn-X-Ser/Thr consensus mot ST complexes and mediates cotranslation ning complexes are required for efficient t have been skipped by STT3A. There are -1-1g antibody detects a protein around 6 (3, 25135935) Applicati Cancer Res IHC nol IHC,IF	tic subur ccharide tif in nal N- t post- two 55-70 kD	

Selected Validation Data

Various lysates were subjected to SDS PAGE followed by western blot with 66581-1-1g (STT3A antibody) at dilution of 1:3000 incubated at room temperature for 1.5 hours. Immunohistochemical analysis of paraffinembedded human breast cancer tissue slide using 66581-1-1g (STT3A antibody) at dilution of 1:200 (under 40x lens. Heat mediated antigen retrieval with Tris-EDTA buffer (pH 9.0).