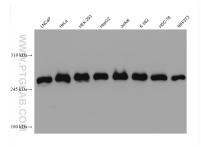
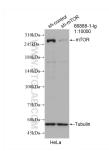
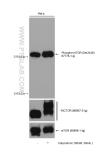
For Research Use Only

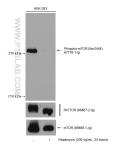

mTOR Monoclonal antibody

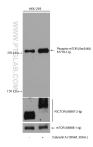
Catalog Number:66888-1-lg Featured Product 416 Publications



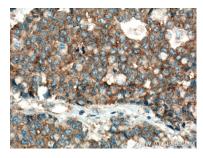
	Catalog Number: 66888-1-lg	GenBank Accession NM_004958	Number:	Purification Method: Protein A purification	
	-			•	
	Size: 150ul , Concentration: 1000 ug/ml by	GeneID (NCBI): 2475 UNIPROT ID: P42345 Full Name: FK506 binding protein 12-rapamycin associated protein 1 Calculated MW: 289 kDa Observed MW: 250-289 kDa		CloneNo.: 1G11A3 Recommended Dilutions: WB 1:5000-1:50000 IP 0.5-4.0 ug for 1.0-3.0 mg of total protein lysate	
	Nanodrop;				
	Source:				
	Mouse				
	lsotype:				
	lgG2a			IHC 1:1000-1:4000	
	Immunogen Catalog Number: AG28395			IF/ICC 1:400-1:1600	
Applications	Tested Applications:		Positive Contr	introls:	
	Cited Applications:brain tissWB, IHC, IF, IP, PLAcells, Hecells, Hecells, He			WB : LNCaP cells, HEK-293 cells, HeLa cells, mouse brain tissue, rat brain tissue, ROS1728 cells, Caco-2 cells, HepG2 cells, Jurkat cells, NCI-H1299 cells, THP- cells, K-562 cells, HSC-T6 cells, NIH/3T3 cells	
			•		
	Species Specificity: human, mouse, rat		IP : HeLa cells		
	Cited Species:			olon cancer tissue, human breast cance	
	human, mouse, rat, pig, chicken, hamster, goat, zebra		tissue, human liver cancer tissue		
	finches IF/ICC:		IF/ICC : HepG	2 cells, HeLa cells	
	Note-IHC: suggested antigen retrieval with TE buffer pH 9.0; (*) Alternatively, antigen retrieval may be performed with citrate buffer pH 6.0				
	MTOR, also named as FRAP1, FRAP, FRAP2 and RAPT1, belongs to the PI3/PI4-kinase family. MTOR is a Ser/Thr protein kinase that functions as an ATP and amino acid sensor to balance nutrient availability and cell growth. MTOR is kinase subunit of both mTORC1 and mTORC2, which regulate cell growth and survival in response to nutrient and hormonal signals. mTORC1 is activated in response to growth factors or amino-acids. mTORC2 is also activated by growth factors, but seems to be nutrient-insensitive. mTORC2 seems to function upstream of Rho GTPases to regulate the actin cytoskeleton, probably by activating one or more Rho-type guanine nucleotide exchange factors. mTORC2 promotes the serum-induced formation of stress-fibers or F-actin. MTOR has a calculated molecular mass of 289 kDa, and always can be detected at about 250 kDa due to some modifications (PMID: 14578359).				
Background Information	protein kinase that functions as an AT MTOR is kinase subunit of both mTOF nutrient and hormonal signals. mTOR activated by growth factors, but seem GTPases to regulate the actin cytoske exchange factors. mTORC2 promotes molecular mass of 289 kDa, and alwa	TP and amino acid se RC1 and mTORC2, wh RC1 is activated in re- to to be nutrient-inset eleton, probably by a the serum-induced fo	nich regulate cell § sponse to growth 1 nsitive. mTORC2 s ctivating one or m ormation of stress	trient availability and cell growth. growth and survival in response to actors or amino-acids. mTORC2 is also seems to function upstream of Rho ore Rho-type guanine nucleotide -fibers or F-actin. MTOR has a calculate	
	protein kinase that functions as an AT MTOR is kinase subunit of both mTOF nutrient and hormonal signals. mTOR activated by growth factors, but seem GTPases to regulate the actin cytoske exchange factors. mTORC2 promotes molecular mass of 289 kDa, and alwa 14578359).	IP and amino acid se RC1 and mTORC2, wh RC1 is activated in re- is to be nutrient-inse- eleton, probably by a- the serum-induced fa sys can be detected a	nich regulate cell § sponse to growth 1 nsitive. mTORC2 s ctivating one or m ormation of stress	trient availability and cell growth. growth and survival in response to actors or amino-acids. mTORC2 is also seems to function upstream of Rho ore Rho-type guanine nucleotide -fibers or F-actin. MTOR has a calculate	
	protein kinase that functions as an AT MTOR is kinase subunit of both mTOF nutrient and hormonal signals. mTOR activated by growth factors, but seem GTPases to regulate the actin cytoske exchange factors. mTORC2 promotes molecular mass of 289 kDa, and alwa 14578359).	IP and amino acid se RC1 and mTORC2, wh RC1 is activated in re- is to be nutrient-inse eleton, probably by ar the serum-induced fr ays can be detected a med ID Jour	nich regulate cell § sponse to growth f nsitive. mTORC2 s ctivating one or m ormation of stress t about 250 kDa d	trient availability and cell growth. growth and survival in response to factors or amino-acids. mTORC2 is also seems to function upstream of Rho ore Rho-type guanine nucleotide fibers or F-actin. MTOR has a calculate ue to some modifications (PMID: Application	
	protein kinase that functions as an AT MTOR is kinase subunit of both mTOF nutrient and hormonal signals. mTOR activated by growth factors, but seem GTPases to regulate the actin cytoske exchange factors. mTORC2 promotes molecular mass of 289 kDa, and alwa 14578359). Author Pub YanHua Fan 361	IP and amino acid se RC1 and mTORC2, wh RC1 is activated in re- is to be nutrient-inse eleton, probably by ar- the serum-induced for sys can be detected a med ID Jour .74847 Fito	nich regulate cell sponse to growth nsitive. mTORC2 s ctivating one or m formation of stress t about 250 kDa d	trient availability and cell growth. growth and survival in response to actors or amino-acids. mTORC2 is also seems to function upstream of Rho ore Rho-type guanine nucleotide -fibers or F-actin. MTOR has a calculate ue to some modifications (PMID: Application WB	
	protein kinase that functions as an AT MTOR is kinase subunit of both mTOF nutrient and hormonal signals. mTOR activated by growth factors, but seem GTPases to regulate the actin cytoske exchange factors. mTORC2 promotes molecular mass of 289 kDa, and alwa 14578359). Author Pub YanHua Fan 361 Guangjie Zhao 361	IP and amino acid se RC1 and mTORC2, wh RC1 is activated in re- is to be nutrient-inset eleton, probably by ar the serum-induced fr ays can be detected a med ID Jour .74847 Fito .63180 Cell	nich regulate cell § sponse to growth f nsitive. mTORC2 s ctivating one or m ormation of stress t about 250 kDa d	trient availability and cell growth. growth and survival in response to factors or amino-acids. mTORC2 is also seems to function upstream of Rho ore Rho-type guanine nucleotide fibers or F-actin. MTOR has a calculate ue to some modifications (PMID: Application	
	protein kinase that functions as an AT MTOR is kinase subunit of both mTOF nutrient and hormonal signals. mTOR activated by growth factors, but seem GTPases to regulate the actin cytoske exchange factors. mTORC2 promotes molecular mass of 289 kDa, and alwa 14578359). Author Pub YanHua Fan 361 Guangjie Zhao 361	IP and amino acid se RC1 and mTORC2, wh RC1 is activated in re- is to be nutrient-inset eleton, probably by ar the serum-induced fr ays can be detected a med ID Jour .74847 Fito .63180 Cell	hich regulate cell sponse to growth the nsitive. mTORC2 state of ctivating one or momation of stress t about 250 kDa de rnal terapia	trient availability and cell growth. growth and survival in response to factors or amino-acids. mTORC2 is also seems to function upstream of Rho ore Rho-type guanine nucleotide fibers or F-actin. MTOR has a calculate ue to some modifications (PMID: Application WB WB	
Background Information Notable Publications Storage	protein kinase that functions as an AT MTOR is kinase subunit of both mTOF nutrient and hormonal signals. mTOR activated by growth factors, but seem GTPases to regulate the actin cytoske exchange factors. mTORC2 promotes molecular mass of 289 kDa, and alwa 14578359). Author Pub YanHua Fan 361 Guangjie Zhao 361 Jingjing Zheng 329 Storage: Storage Storage St	IP and amino acid se RC1 and mTORC2, wh RC1 is activated in re- is to be nutrient-inse- eleton, probably by ar- the serum-induced fra- sys can be detected a med ID Jour .74847 Fito .63180 Cell 178798 Ann er shipment. % glycerol, pH7.3	hich regulate cell sponse to growth the nsitive. mTORC2 state of ctivating one or momation of stress t about 250 kDa de rnal terapia	trient availability and cell growth. growth and survival in response to factors or amino-acids. mTORC2 is also seems to function upstream of Rho ore Rho-type guanine nucleotide fibers or F-actin. MTOR has a calculate ue to some modifications (PMID: Application WB WB	
Notable Publications	protein kinase that functions as an AT MTOR is kinase subunit of both mTOF nutrient and hormonal signals. mTOR activated by growth factors, but seem GTPases to regulate the actin cytoske exchange factors. mTORC2 promotes molecular mass of 289 kDa, and alwa 14578359). Author Pub YanHua Fan 361 Guangjie Zhao 361 Jingjing Zheng 329 Storage: Storage Storage Storage Buffer:	IP and amino acid se RC1 and mTORC2, wh RC1 is activated in re- is to be nutrient-inse- eleton, probably by ar- the serum-induced fra- sys can be detected a med ID Jour .74847 Fito .63180 Cell 178798 Ann er shipment. % glycerol, pH7.3	hich regulate cell sponse to growth the nsitive. mTORC2 state of ctivating one or momation of stress t about 250 kDa de rnal terapia	trient availability and cell growth. growth and survival in response to factors or amino-acids. mTORC2 is also seems to function upstream of Rho ore Rho-type guanine nucleotide fibers or F-actin. MTOR has a calculate ue to some modifications (PMID: Application WB WB	

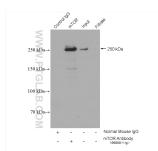

Selected Validation Data


Various lysates were subjected to SDS PAGE followed by western blot with 66888-1-Ig (mTOR antibody) at dilution of 1:20000 incubated at room temperature for 1.5 hours.


WB result of mTOR antibody (66888-1-lg; 1:10000; incubated at room temperature for 1.5 hours) with sh-Control and sh-mTOR transfected HeLa cells.

Non-treated and Calyculin A treated HeLa cells were subjected to SDS PAGE followed by western blot with 67778-1-Ig (Phospho-mTOR (Ser2448) antibody) at dilution of 1:10000 incubated at room temperature for 1.5 hours. The membrane was stripped and re-blotted with RICTOR antibody (66867-2-Ig) and mTOR antibody (66888-1-Ig) subsequently.


Non-treated and Rapamycin treated HEK-293 cells were subjected to SDS PAGE followed by western blot with 67778-1-Ig (Phospho-mTOR (Ser2448) antibody) at dilution of 1:10000 incubated at room temperature for 1.5 hours. The membrane was stripped and re-blotted with RICTOR antibody (66867-2-Ig) and mTOR antibody (66888-1-Ig) subsequently.


Non-treated and Calyculin A treated HEK-293 cells were subjected to SDS PAGE followed by western blot with 67778-1-Ig (Phospho-mTOR (Ser2448) antibody) at dilution of 1:10000 incubated at room temperature for 1.5 hours. The membrane was stripped and re-blotted with RICTOR antibody (66867-2-Ig) and mTOR antibody (66888-1-Ig) subsequently.

Immunohistochemical analysis of paraffinembedded human colon cancer tissue slide using 66888-1-1g (MTOR antibody) at dilution of 1:2500 (under 10x lens. Heat mediated antigen retrieval with Tris-EDTA buffer (pH 9.0).

Immunohistochemical analysis of paraffinembedded human colon cancer tissue slide using 66888-1-1g (MTOR antibody) at dilution of 1:2500 (under 40x lens. Heat mediated antigen retrieval with Tris-EDTA buffer (pH 9.0).

IP result of anti-mTOR (IP:66888-1-Ig, 5ug; Detection:66888-1-Ig 1:20000) with HeLa cells lysate 1600 ug.

Immunofluorescent analysis of (-20°C Ethanol) fixed HepG2 cells using mTOR antibody (66888-1-Ig, Clone: 1G11A3) at dilution of 1:800 and CoraLite@488-Conjugated Goat Anti-Mouse IgG(H+L) (SA00013-1).