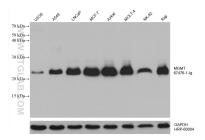
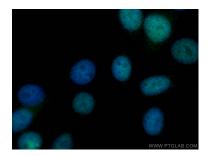
For Research Use Only

MGMT Monoclonal antibody

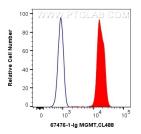
Catalog Number:67476-1-lg Featured Product 3 Publications

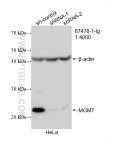


Basic Information	Catalog Number: 67476-1-lg	GenBank Accession Number: BC 000824		Purification Method: Protein A purification				
	Size:	GenelD (NCBI):		CloneNo.: 1H2C9				
	150ul , Concentration: 1000 ug/ml by Nanodrop; Source: Mouse Isotype: IgG2a							
		UNIPROT ID: P16455 Full Name: O-6-methylguanine-DNA methyltransferase		Recommended Dilutions: WB 1:5000-1:50000 IF/ICC 1:50-1:500				
					Immunogen Catalog Number: AG29936	Calculated MW: 22 kDa Observed MW: 22 kDa		
	Applications	Tested Applications:	Positive Controls:					
		WB, IF/ICC, FC (Intra), ELISA	WB, IF/ICC, FC (Intra), ELISA WB: U2OS cells, HeLa cells, HepG2 cells, LNCaP of Cited Applications: Unrkat cells, A549 cells, MCF-7 cells, MOLT-4 cell WB, IF 92 cells, Raji cells		S cells, HeLa cells, HepG2 cells, LNCaP cells,			
Species Specificity: human		IF/ICC : HepG2 cells,						
	Cited Species: human, mouse							
Background Information	human, mouse MGMT is the primary vehicle for cellu position of thymine. While key to the alkylating chemotherapies, inhibitin mechanism for the removal of alkyla position of guanine is one of several	e maintenance of g g the efficacy of ca ition damage from positions in DNA b	genomic integrity ancer treatment [In the O-6 position bases to which all	he O-6 position of guanine and the O-4 , MGMT also removes damage induced by PMID:23065697].MGMT is the primary of guanine [PMID: 17482892]. The O-6 (yl groups are attached in SN1 alkylation Ils and via MGMT homologs in bacteria and				
	human, mouse MGMT is the primary vehicle for cellu position of thymine. While key to the alkylating chemotherapies, inhibitin mechanism for the removal of alkyla position of guanine is one of several reactions, and this repair has been we Archaea.[PMID: 10767620]	e maintenance of g g the efficacy of ca ition damage from positions in DNA b ell-characterized i	enomic integrity ancer treatment [n the O-6 position bases to which all n mammalian ce	, MGMT also removes damage induced by PMID:23065697].MGMT is the primary of guanine [PMID: 17482892]. The O-6 (yl groups are attached in SN1 alkylation Ils and via MGMT homologs in bacteria and				
Background Information	human, mouse MGMT is the primary vehicle for cellu position of thymine. While key to the alkylating chemotherapies, inhibitin mechanism for the removal of alkyla position of guanine is one of several reactions, and this repair has been we Archaea.[PMID: 10767620]	e maintenance of g g the efficacy of ca tion damage from positions in DNA b ell-characterized i bmed ID	genomic integrity ancer treatment [In the O-6 position bases to which all	, MGMT also removes damage induced by PMID:23065697].MGMT is the primary of guanine [PMID: 17482892]. The O-6 cyl groups are attached in SN1 alkylation Ils and via MGMT homologs in bacteria and Application				
	human, mouse MGMT is the primary vehicle for cellu position of thymine. While key to the alkylating chemotherapies, inhibitin mechanism for the removal of alkyla position of guanine is one of several reactions, and this repair has been we Archaea.[PMID: 10767620] Author Pu Mingming Yang 35	e maintenance of g g the efficacy of ca ition damage from positions in DNA b ell-characterized i bmed ID 648484	genomic integrity ancer treatment [n the O-6 position bases to which all n mammalian ce	, MGMT also removes damage induced by PMID:23065697].MGMT is the primary of guanine [PMID: 17482892]. The O-6 cyl groups are attached in SN1 alkylation Ils and via MGMT homologs in bacteria and Application				
	human, mouse MGMT is the primary vehicle for cellu position of thymine. While key to the alkylating chemotherapies, inhibitin mechanism for the removal of alkyla position of guanine is one of several reactions, and this repair has been we Archaea.[PMID: 10767620] Author Pu Mingming Yang 35 Claire S Chung 39	e maintenance of g g the efficacy of ca ition damage from positions in DNA b ell-characterized i bmed ID 648484	genomic integrity ancer treatment [n the O-6 position bases to which all n mammalian ce Journal Nucleic Acids Res	, MGMT also removes damage induced by PMID:23065697].MGMT is the primary of guanine [PMID: 17482892]. The O-6 cyl groups are attached in SN1 alkylation lls and via MGMT homologs in bacteria and Application IF				
Notable Publications	human, mouse MGMT is the primary vehicle for cellu position of thymine. While key to the alkylating chemotherapies, inhibitin mechanism for the removal of alkyla position of guanine is one of several reactions, and this repair has been we Archaea.[PMID: 10767620] Author Pu Mingming Yang 35 Claire S Chung 39 Zengpanpan Ye 36 Storage:	e maintenance of g g the efficacy of ca ition damage from positions in DNA b ell-characterized i bmed ID 648484 1375347 1649564	genomic integrity ancer treatment [n the O-6 position bases to which all n mammalian ce Journal Nucleic Acids Res Nat Commun	, MGMT also removes damage induced by PMID:23065697].MGMT is the primary of guanine [PMID: 17482892]. The O-6 cyl groups are attached in SN1 alkylation Ils and via MGMT homologs in bacteria and Application IF WB				
	human, mouse MGMT is the primary vehicle for cellu position of thymine. While key to the alkylating chemotherapies, inhibitin mechanism for the removal of alkyla position of guanine is one of several reactions, and this repair has been we Archaea.[PMID: 10767620] Author Pu Mingming Yang 35 Claire S Chung 39 Zengpanpan Ye 36 Storage: Storage Storage St	e maintenance of g g the efficacy of ca ition damage from positions in DNA b ell-characterized i bmed ID 648484 375347 649564	genomic integrity ancer treatment [n the O-6 position bases to which all n mammalian ce Journal Nucleic Acids Res Nat Commun Cancer Discov	, MGMT also removes damage induced by PMID:23065697].MGMT is the primary of guanine [PMID: 17482892]. The O-6 cyl groups are attached in SN1 alkylation Ils and via MGMT homologs in bacteria and Application IF WB				
Notable Publications	human, mouse MGMT is the primary vehicle for cellu position of thymine. While key to the alkylating chemotherapies, inhibitin mechanism for the removal of alkyla position of guanine is one of several reactions, and this repair has been we Archaea.[PMID: 10767620] Author Pu Mingming Yang 35 Claire S Chung 39 Zengpanpan Ye 36 Storage: Store at -20°C. Stable for one year aft	e maintenance of g g the efficacy of ca ition damage from positions in DNA b ell-characterized i bmed ID 648484 375347 649564 eer shipment.	genomic integrity ancer treatment [n the O-6 position bases to which all n mammalian ce Journal Nucleic Acids Res Nat Commun Cancer Discov	, MGMT also removes damage induced by PMID:23065697].MGMT is the primary of guanine [PMID: 17482892]. The O-6 cyl groups are attached in SN1 alkylation Ils and via MGMT homologs in bacteria and Application IF WB				


For technical support and original validation data for this product please contact: T: 1 (888) 4PTGLAB (1-888-478-4522) (toll free E: proteintech@ptglab.com in USA), or 1(312) 455-8498 (outside USA) W: ptglab.com

This product is exclusively available under Proteintech Group brand and is not available to purchase from any other manufacturer.


Selected Validation Data


Various lysates were subjected to SDS PAGE followed by western blot with 67476-1-Ig (MGMT antibody) at dilution of 1:10000 incubated at room temperature for 1.5 hours. The membrane was stripped and reblotted with HRP-conjugated GAPDH Monoclonal antibody (HRP-60004) as loading control.

Immunofluorescent analysis of (4% PFA) fixed HepG2 cells using MGMT antibody (67476-1-Ig, Clone: 1H2C9) at dilution of 1:100 and CoraLite®488-Conjugated Goat Anti-Mouse IgG(H+L).

1X10^6 Jurkat cells were intracellularly stained with 0.4 ug Anti-Human MGMT (67476-1-1g, Clone:1H2C9) and Coralite®488-Conjugated Goat Anti-Mouse 1gG(H+L) at dilution 1:1000 (red), or 0.4 ug Control Antibody. Cells were fixed with 4% PFA and permeabilized with Flow Cytometry Perm Buffer (PF00011-C).

WB result of MGMT antibody (67476-1-Ig; 1:4000; incubated at room temperature for 1.5 hours) with sh-Control and sh-MGMT transfected HeLa cells.