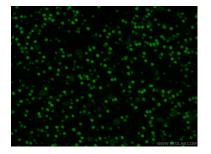
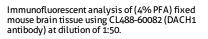
For Research Use Only

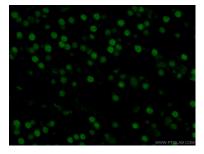
CoraLite® Plus 488-conjugated DACH1 Monoclonal antibody

Catalog Number:CL488-60082 Featured Product

Basic Information	Catalog Number: CL488-60082	GenBank Accession Number: BC021219	Purification Method: Protein G purification				
	Size: 100ul , Concentration: 1000 ug/ml by Nanodrop; Source: Mouse Isotype: IgG1 Immunogen Catalog Number: AG4474	GeneID (NCBI): 1602 UNIPROT ID: Q9UI36 Full Name: dachshund homolog 1 (Drosophila) Calculated MW: 79 kDa	CloneNo.: 3B6D2 Recommended Dilutions: IF-P 1:50-1:500 Excitation/Emission maxima wavelengths: 493 nm / 522 nm				
				Applications	Tested Applications:	Positive Controls: IF-P : mouse brain tissue,	
					IF-P Species Specificity: human, mouse, rat		
					DACH1 a homologue of the Drocaphi	DACH1, a homologue of the Drosophila dachshund gene, is a key regulator of cell fate determination during eye, leg, and brain development in the fly. Through interacting with NCoR and Smad4, DACH1 is able to inhibit the transforming growth factor-beta (TGF-beta) signaling pathway. DACH1 can inhibit breast cancer cellular proliferation via cyclin D1, suggesting a possible role in tumor suppression. Additionally, DACH1 plays an importan role in negative regulation of RANKL (Receptor activator of NF-kappaB ligand) gene expression in marrow stromal/preosteoblast cells. Dach1 expression is enriched in rECs, which are associated with osteoprogenitors and bone-resorbing osteoclasts, and overexpression of DACH1 in postnatal mice induces a strong increase in arteries and type R capillaries, leading to local metabolic changes and enabling trabecular bone formation in normally highly hypoxic areas of the diaphysis (PMID: 39528700). Moreover, Loss of DACH1 expression might be involved in endometrial cancer progression. Four isoforms of DACH1 are produced by alternative splicing. This antibody is a rabbit polyclonal antibody raised against residues near the C terminus of human DACH1. The antibody is conjugated with CL488, Ex/Em 488 nm/515 nm.	
Background Information	teg, and brain development in the hy transforming growth factor-beta (TGF proliferation via cyclin D1, suggestin role in negative regulation of RANKL stromal/preosteoblast cells. Dach1 er bone-resorbing osteoclasts, and over and type R capillaries, leading to locc highly hypoxic areas of the diaphysis endometrial cancer progression. Four rabbit polyclonal antibody raised aga	: Through interacting with NCoR and S -beta) signaling pathway. DACH1 can g a possible role in tumor suppressior (Receptor activator of NF-kappaB liga «pression is enriched in rECs, which a expression of DACH1 in postnatal mic al metabolic changes and enabling tra s (PMID: 39528700). Moreover, Loss of isoforms of DACH1 are produced by a	Smad4, DACH1 is able to inhibit the ninhibit breast cancer cellular n. Additionally, DACH1 plays an important nd) gene expression in marrow re associated with osteoprogenitors and se induces a strong increase in arteries abecular bone formation in normally DACH1 expression might be involved in alternative splicing. This antibody is a				


For technical support and original validation data for this product please contact: T: 1 (888) 4PTGLAB (1-888-478-4522) (toll free E: proteintech@ptglab.com in USA), or 1(312) 455-8498 (outside USA) W: ptglab.com


This product is exclusively available under Proteintech Group brand and is not available to purchase from any other manufacturer.


proteintech

Antibodies | ELISA kits | Proteins www.ptglab.com

Selected Validation Data

Immunofluorescent analysis of (4% PFA) fixed mouse brain tissue using CL488-60082 (DACH1 antibody) at dilution of 1:50.