

Speedy™ Human APOE One-Step ELISA Kit Datasheet

Please read it entirely before use

Catalogue Number: SE50082

Size: 96T

Sensitivity: 0.01 ng/mL

Range: 0.156-10 ng/mL

Usage: For the quantitative detection of human APOE concentrations in serum, plasma, urine, saliva and CSF.

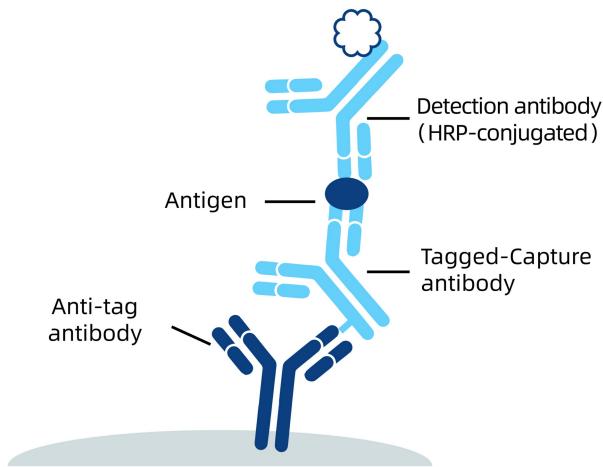

This product is for research use only and not for use in human or animal therapeutic or diagnostic.

Table of content	page
1. Background	3
2. Principle	3
3. Required Materials	3
4. Kit Components and Storage	4
5. Safety Notes	4
6. Sample Collection and Storage	4
7. Regent Preparation	5
8. Assay Procedure Summary	6
9. Validation Data	7
9.1 Standard curve	7
9.2 Precision	8
9.3 Recovery	8
9.4 Sample values	8
9.5 Sensitivity	9
9.6 Linearity	9
9.7 Specificity	9
10. References	9

1. Background

APOE (apolipoprotein E) is a plasma protein implicated in lipid metabolism. It is produced predominantly by hepatocytes, macrophages, and neural cells. In the CNS, APOE is the major extracellular lipid carrier and plays a key role in neuronal protection and repair after injury. APOE is polymorphic, with three major alleles: APOE2 (cys112, cys158), APOE3 (cys112, arg158), and APOE4 (arg112, arg158). APOE2 plays a protective role against both Alzheimer's (AD) and heart disease. APOE4 confers a higher risk for atherosclerosis and Alzheimer's disease. Analysis of cerebrospinal fluid (CSF) and plasma APOE protein levels in AD patients had been performed to examine its association with AD pathology. In old age, high plasma APOE levels precede an increase of circulating CRP and strongly associates with cardiovascular mortality.

2. Principle

An anti-tag antibody is pre-coated onto the bottom of wells. After adding antigen or samples, Tagged-Capture antibody and HRP-conjugated detection antibody, a sandwich complex is formed in the solution. TMB acts as a HRP substrate, and the solution color will change from colorless to blue. A stop solution containing sulfuric acid turns the solution yellow. The color intensity is proportional to the quantity of bound protein, which is measurable at 450 nm with the correction wavelength set at 630 nm.

3. Required Materials

- 3.1 A microplate reader capable of measuring absorbance at 450 nm with the correction wavelength set at 630 nm.
- 3.2 Calibrated, adjustable precision pipettes and disposable plastic tips. A manifold multi-channel pipette is recommended for large assays.
- 3.3 Plate washer: automated or manual.
- 3.4 Absorbent paper towels.
- 3.5 Glass or plastic tubes to prepare standard and sample dilutions.
- 3.6 Beakers and graduated cylinders.
- 3.7 Log-log or semi-log graph paper or computer and software for ELISA data analysis. A four-parameter logistic (4-PL) curve-fit is recommended. Proteintech data analysis website, <https://www.ptgcn.com/products/elisa-kits/>.
- 3.8 Microplate thermostatic shaker.

4. Kit Components and Storage

Microplate - 96 well microplate precoated an anti-tag antibody (8 well × 12 strips)	1 plate	Unopened Kit: Store at 2-8°C for 6 months or -20°C for 12 months.
Protein standard - 20 ng/bottle; lyophilized	2 bottles	Opened Kit: All reagents stored at 2-8°C for 7 days.
Capture antibody (100×) - 60 µL/vial*	1 vial	
Detection antibody, HRP-conjugated (100×) - 60 µL/vial*	1 vial	
Sample Diluent PT 4B1 - 30 mL/bottle	2 bottles	
Detection Diluent - 15 mL/bottle	1 bottle	
Wash Buffer Concentrate (20×) - 30 mL/bottle	1 bottle	
Tetramethylbenzidine Substrate (TMB) - 12 mL/bottle	1 bottle	
Stop Solution - 12 mL/bottle	1 bottle	
Plate Cover Seals	4 pieces	Please use a new standard for each assay.

* Centrifugation immediately before use

5. Safety Notes

- 5.1 Avoid any skin and eye contact with Stop Solution and TMB. In case of contact, wash thoroughly with water.
- 5.2 Do not use the kit after the expiration date.
- 5.3 Do not mix or substitute reagents or materials from other kit lots or other sources.
- 5.4 Be sure to wear protective equipment such as gloves, masks and goggles during the experiment.
- 5.5 When using an automated plate washer, adding a 30 second soak period following the addition of Wash Buffer to improve assay precision

6. Sample Collection and Storage

- 6.1 Serum: Allow blood samples to clot for 30 minutes, followed by centrifugation for 15 minutes at 1000xg. Clear serum can be assayed immediately or aliquoted and stored at -20°C. Avoid repeated freeze-thaw cycles.
- 6.2 Plasma: Use EDTA, heparin, or citrate as an anticoagulant for plasma collection. Centrifuge for 15 minutes at 1000xg within 30 minutes of collection. The plasma can be assayed immediately or aliquoted and stored at -20°C. Avoid repeated freeze-thaw cycles.
- 6.3 Urine: Collect urine samples and centrifuge for 20 minutes at 1000xg. Collect the aqueous layer, assay immediately or aliquot and store samples at ≤ -20°C. Avoid repeated freeze-thaw cycles.
- 6.4 Saliva: Collect saliva samples and centrifuge for 5 minutes at 10,000xg. Collect the aqueous layer, assay immediately or aliquot and store samples at ≤ -20°C. Avoid repeated freeze-thaw cycles.
- 6.5 Human Cerebrospinal Fluid (CSF): Collect CSF samples in a tube and centrifuge for 15 minutes at 1000xg. Collect the aqueous layer, assay immediately or aliquot and store samples at ≤ -20°C. Avoid repeated freeze-thaw cycles.

7. Regent Preparation

7.1 Wash Buffer (1X): If crystals have formed in the concentrate, warm to room temperature and mix gently until the crystals have completely dissolved. Add 30 mL of Wash Buffer Concentrate(20X) to 570 mL deionized or distilled water to prepare 1X Wash Buffer.

7.2 Antibody Cocktail (1X): Dilute 100X capture antibody and 100X HRP-conjugated detection antibody using Detection Diluent prior to assay. Suggested 1:100 dilution: 50 μ L 100X capture antibody + 50 μ L 100X Detection Antibody, HRP-conjugated + 4,900 μ L Detection Diluent. Mix gently but thoroughly.

7.3 Sample Dilution: Different samples should be diluted with corresponding Sample Diluent, samples may require further dilution if the readout values are higher than the highest standard OD reading. Variations in sample collection, processing and storage may affect the results of the measurement.

Recommended Dilution for different sample types: 1:4,000 or 1:8,000 is recommended for human serum and plasma. 1:2 or 1:4 is recommended for urine and saliva. 1:400 or 1:800 is recommended for CSF.

7.4 Standard Serial Dilution:

Add 2 mL Sample Diluent PT 4B1 in protein standard.

Add # μ L of Standard diluted in the previous step	—	500 μ L					
# μ L of Sample Diluent PT 4B1	2000 μ L	500 μ L					
	"sd7"	"sd6"	"sd5"	"sd4"	"sd3"	"sd2"	"sd1"

8. Assay Procedure Summary

Bring all reagents to room temperature before use (Detection antibody, HRP-conjugated antibody can be used immediately). To avoid cross-contamination, change pipette tips between additions of each standard level, between sample additions, and between reagent additions. Also, use separate reservoirs for each reagent.

8.1 Preset the layout of the microplate, including control group, standard group and sample group, take out the required number of microplate strips and return excess strips to the foil pouch containing the drying reagent pack and reseal; store at 4°C immediately. Microplate strips should be used in one week.

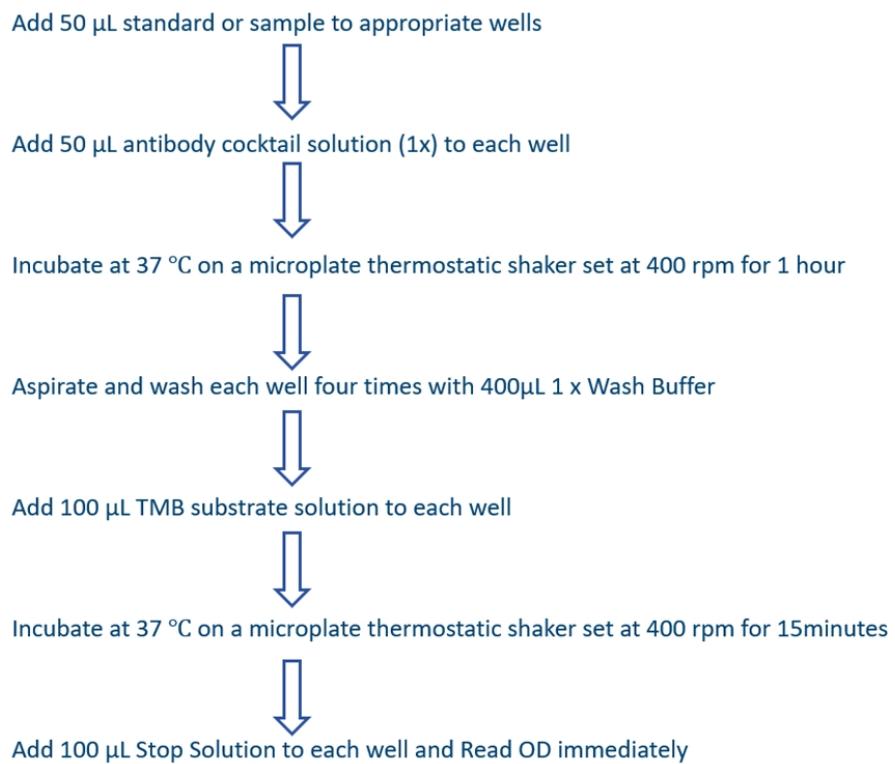
8.2 Add 50 µL standard or sample to appropriate wells. To avoid high background always add samples or standards to the well before the addition of antibody cocktail.

8.3 Add 50 µL 1× Antibody Cocktail solution (refer to Reagent Preparation 7.2) to each well. Seal plate with cover seal and incubate at 37°C on a microplate thermostatic shaker set at 400 rpm for 1 hour (incubate at 37°C for 2 hours is recommended if thermostatic shaker is not available) .

8.4 Wash

1) Gently remove the cover seal. Discard the liquid from wells by aspirating or decanting. Remove any residual solution by tapping the plate a few times on fresh paper towels.

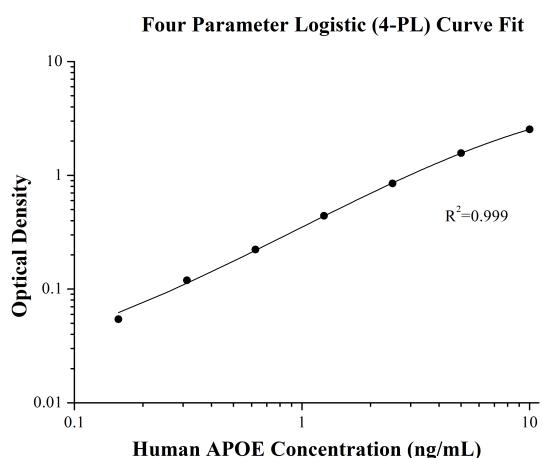
2) Wash 4 times with 1× Wash Buffer, using at least 350-400 µL per well. Following the last wash, firmly tap plates on fresh towels 10 times to remove residual Wash Buffer. Avoid getting any towel fibers in the wells or wells drying out completely.


8.5 Add 100 µL TMB substrate solution to each well, protected from light. Incubate at 37°C on a microplate thermostatic shaker set at 400 rpm for 15 to 20 minutes. (Substrate Solution should remain colorless until added to the plate.)

8.6 Add 100 µL Stop Solution to each well in the same order as addition of the TMB substrate. Note: Avoid skin and eye contact with the Stop solution.

8.7 Read results immediately on a microplate reader at a wavelength of 450 nm. If possible, perform a double wavelength readout (450 nm and 630 nm).

8.8 Data analysis: Calculate the average of the duplicate readings (OD value) for each standard and sample, and subtract the average of the zero standard absorbance. Construct a standard curve by plotting the mean absorbance for each standard on the y-axis against the concentration on the x-axis, four-parameter logistic curve-fit (4-PL) analysis is recommended. If the samples have been diluted, the fitting result must be multiplied by the dilution factor used.


Procedure summary

9. Validation Data

9.1 Standard curve

These standard curves are provided for demonstration only. A standard curve should be generated for each set of samples assayed.

(ng/mL)	O.D	Average	Corrected
0	0.017 0.0162	0.0166	-
0.156	0.0704 0.0712	0.0708	0.0542
0.313	0.1477 0.1241	0.1359	0.1193
0.625	0.238 0.2408	0.2394	0.2228
1.25	0.4535 0.4602	0.45685	0.44025
2.5	0.8582 0.8728	0.8655	0.8489
5	1.5843 1.5861	1.5852	1.5686
10	2.5622 2.5387	2.55045	2.53385

9.2 Precision

Intra-assay Precision (Precision within an assay) Three samples of known concentration were tested 8 times on one plate to assess intra-assay precision.

Inter-assay Precision (Precision between assays) Three samples of known concentration were tested in 16 separate assays to assess inter-assay precision.

Intra-assay Precision					Inter-assay Precision				
Sample	n	Mean (ng/mL)	SD	CV%	Sample	n	Mean (ng/mL)	SD	CV%
1	8	5.39	0.44	8.16	1	16	5.37	0.40	7.45
2	8	1.34	0.04	2.99	2	16	1.34	0.08	5.97
3	8	0.39	0.01	2.56	3	16	0.40	0.02	5.00

9.3 Recovery

The recovery of human APOE spiked to three different levels throughout the range of the assay was evaluated.

Sample Type		Average% of Expected	Range (%)
Human plasma	1:16,000	97	93-100
	1:32,000	100	99-102
Urine	1:8	110	107-114
	1:16	113	110-116
Saliva	1:8	124	118-128
	1:16	116	115-118
CSF	1:1,600	116	99-126

9.4 Sample values

Human plasma/Urine/Saliva/CSF - Human plasma, urine, saliva and CSF samples were evaluated for the presence of human APOE in this assay.

Sample Type	Mean (µg/mL)	Range (µg/mL)
Human plasma (n=16)	21.76	10.01-63.23

Sample Type	Mean (ng/mL)	Range (ng/mL)
Urine (n=12)	6.20	0.50-11.82
Saliva (n=11)	8.15	2.12-22.15
CSF (n=7)	1,665.46	647.95-3,070.87

9.5 Sensitivity

The minimum detectable dose of human APOE is 0.01 ng/mL. This was determined by adding two standard deviations to the concentration corresponding to the mean O.D. of 20 zero standard replicates.

9.6 Linearity

To assess the linearity of the assay, samples were diluted with the appropriate Sample Diluent to produce samples with values within the dynamic range of the assay.

(The human plasma was initially diluted 1:2,000. The CSF was initially diluted 1:200.)

		Human plasma	Urine	Saliva	CSF
1:2	Average% of Expected	100	100	100	100
	Range (%)	-	-	-	-
1:4	Average% of Expected	87	101	101	91
	Range (%)	86-88	100-101	94-107	82-100
1:8	Average% of Expected	82	104	96	90
	Range (%)	82-83	97-112	83-109	81-98
1:16	Average% of Expected	79	87	91	83
	Range (%)	76-81	86-88	73-110	81-85

9.7 Specificity

This assay recognizes natural and recombinant human AFP.

The following factors prepared at 50 ng/mL were assayed and exhibited no cross-reactivity or interference.

Recombinant human:

ApoA1

ApoB

ApoC1

ApoC2

ApoD

ApoH

ApoM

LDL R

10. References

1. Teng E. et al. (2015). Dement Geriatr Cogn Disord. 39(3-4):154-66.
2. Mooijaart SP. et al. (2006). PLoS Med. Jun;3(6):e176.