

Protocol Description

This protocol provides instructions for cell staining with the MultiPro® Human Discovery Panel (Cat No.G900150). For convenience, this protocol contains steps taken from several 10x Genomics protocols. Please read the entire protocol before starting.

Product Description

The Human Discovery Panel (HDP) contains 347 DNA-barcoded antibodies separated into a Cell Surface (purple cap) and Intracellular (white cap) cocktails. Each reaction of the Human Discovery Panel contains enough material to stain up to 2M cells.

This protocol results in the generation of two sequencing libraries: Gene Expression (GEX), and HDP Expression (HEX). Please read the entire protocol before starting.

Oligonucleotide Sequence

Human Discovery Panel antibodies are conjugated to **5CFLX** oligonucleotides with the following sequence:

CGGAGATGTGTATAAGAGACAG-NNNNNNNNNNNNNNNN-CCCATATAAGA*A*A

N represents randomly chosen A, T, C, or G. * Phosphorothioate bonds

Barcode sequences are available in the HDP **Feature Reference File** and can be downloaded from the <u>HDP product page</u>.

Workflow and Associated Protocols

- 1. Prepare single-cell suspension
- 2. Stain cells with the Human Discovery Panel Cell Surface cocktail
- 3. Short cell fixation
- 4. Stain cells with the Human Discovery Panel Intracellular cocktail
- 5. 10x Genomics fixation
- 6. 10x Genomics Flex
 - a. Probe Hybridization
 - b. Optional storage*
 - c. Single-cell partitioning
 - d. Sequencing library prep
 - e. Sequencing
 - f. Data analysis
 - g. Optional storage

This document will guide you through steps 2 to 6 and 7d. For your convenience we've included protocol steps and buffer formulations from the appropriate 10x Genomics protocols below.

* If needed, Proteintech Genomics recommends storing antibody-stained cells post probe hybridization.

Staining with the Human Discovery Panel

10x Genomics Demonstrated Protocol for Cell Surface and Intracellular Protein

Labeling for Next GEM Fixed RNA Profiling (CG000529 Rev C)

10x Genomics Flex Fixation

10x Genomics Fixation of Cells & Nuclei for Next GEM Fixed RNA Profiling (CG000478 Rev D)

Next Steps

The following documents are required for completing the Flex workflow:

Next GEM Flex Gene Expression Reagent Kit for Multiplex samples with Feature Barcode technology for Protein Expression (CG000673 Rev B)

Critical: This protocol *IS NOT* compatible with the "Chromium Fixed RNA Profiling Reagent Kits for Singleplexed Samples with Feature Barcode technology for Protein (CG000477 Rev E) user guide.

Required Reagents and Consumables

Description	Manufacturer	Part Number
HashMax™-5 Cell Hashing Antibodies	Proteintech Genomics	G900081
HashMax [™] Primer T [2 µM] 5'-GTGACTGGAGTTCAGACGTGTGCTC-3' HPLC purified	Proteintech Genomics	G900149
MultiPro® Human Discovery Panel	Proteintech Genomics	G900150
MultiPro® Enhanced Blocking Reagent	Proteintech Genomics	G900005-65UL
1.5 mL Protein LoBind tubes	Eppendorf	022431081
Dual Index Kit TT Set A	10x Genomics	1000215
Fixed RNA Feature Barcode Multiplexing Kit, 64 rxns	10x Genomics	1000628
Conc. Fix & Perm Buffer	10x Genomics	2000517
Conc. Quench Buffer	10x Genomics	2000516
Protector RNase inhibitor	Roche	3335399001
Tween-20, 10%	Thermo Scientific	28320
NP-40, 10%	Thermo Scientific	85124
Dextran Sulfate Sodium Salt, 8 kDa	Millipore Sigma	RES2029D-A7
Bovine Serum Albumin, Nuclease-free	Millipore Sigma	126609100GM
Paraformaldehyde, 32%	Electron Microscopy Sciences	15714
Human TruStain FcX™	BioLegend	422302
PBS, Ultrapure (10X)	Invitrogen	AM9625
Nuclease-free Water	-	-

Required Equipment

- Centrifuge capable of $14,000 \times g$, with a rotor suitable for 1.5 mL microcentrifuge tubes.
- Swinging bucket centrifuge with adapter capable of holding 1.5 mL microcentrifuge tubes.

• Tabletop vortex mixer.

Before You Start

Pipetting

- Avoid vacuum aspiration during wash steps to minimize the risk of complete cell loss.
- Use P1000 pipette tips for all aspiration steps. Be careful not to disturb the cell pellet or touch it with the pipette tip. Leaving ~20 μ L of residual liquid in each tube at each step is acceptable.
- Handle cell suspensions gently. Avoid vigorous pipetting or mixing that could compromise cell viability or integrity.

Time required - Depending on the number of samples being stained, this protocol is expected to take ~3-4 hours

Sample preparation - A high-quality sample is critical for assay performance. The ideal cell suspension has high viability (> 80%) and minimal cell clumps and debris. We strongly recommend straining cells through a 30µm filter such as Pre-Separation Filters (Miltenyi PN: 130-041-407) to remove cell aggregates. During resuspension and mixing steps, pipette gently and avoid introducing bubbles.

RNase awareness - To prevent RNA degradation, use nuclease-free reagents and consumables listed in this protocol. Before starting, decontaminate your work surfaces and pipettes using RNase Zap (Invitrogen PN: AM9780).

Centrifuge selection – All steps requiring centrifugation of a cell suspension should be performed using a swinging bucket rotor centrifuge. Use of a fixed angle rotor can result in smearing of the cell pellet, which may negatively impact cell recovery.

Sequencing depth

Add a minimum of 10K paired end reads per cell (targeted cell recovery)

Run configuration

Read 1: 28 cycles Index 1: 10 cycles Index 2: 10 cycles Read 2: 90 cycles

Buffer Preparation

20% BSA Stock Solution

Dissolve 4 g of nuclease-free BSA powder in 20 mL of ultrapure water. Filter-sterilize using a 0.2 μm filter and store at 4 °C for up to one week.

1% Dextran Sulfate Stock Solution

Dissolve $0.050~{\rm g}$ of dextran sulfate, $8~{\rm kDa}$ in $5~{\rm mL}$ of nuclease-free water. Store at room temperature for up to $1~{\rm month}$.

Cell Surface (CS) Buffer

Component	[Final]	1 sample + 10%	4 samples + 10%
BSA, 20%	1%	374	1496
10X PBS	1x	748	2992
Nuclease-free water	-	6358	25432
To	otal -	7480 µL	29920 μL

Blocking Buffer

Component	[Fina	al] 1 sample +	10% 4 samples + 10%	
CS Buffer	-	47.5	190	
Human TruStain FcX	-	7.5	30	
	Total -	55 μL	220 µL	

Intracellular (IC) Buffer

Component	[Final]	1 sample + 10%	4 samples + 10%
RNase inhibitor (200X)	1X	1.1	4.4
Nuclease-free BSA, 20%	7.55%	41.53	166.1
Tween-20, 10%	0.2%	2.2	8.8
NP-40 or Nonidet P40 Substitute, 10%	0.5%	5.5	22
Dextran Sulfate, 8 kDa, 1%	0.025%	2.75	11
Enhanced Blocking Reagent	-	15.95	63.8
Human TruStain FcX™	-	5.5	22
PBS, Ultrapure (10X)	1x	11	44
Nuclease-free Water	-	24.47	97.9
Total		110 µL	440 μL

Wash Buffer

Component	[Final]	1 sample + 10%	4 samples + 10%
RNase Inhibitor, 40 U/µL	0.2 U	11	44
Tween-20, 10%	0.1%	22	88
Nuclease-free BSA, 20%*	1%	110	440
10X PBS	1X	220	880
Nuclease-free water		1837	7348
Total		2200 µL	8800 µL

^{*}The original 10x Genomics recipe calls for 30% BSA; we've adjusted this to 20% BSA for easier dissolving of BSA powder into solution.

Fixation Buffer

Component	[Final]	1 sample + 10%	4 samples + 10%
Conc. Fix & Perm Buffer			
Thaw at room temperature. Vortex, check for precipitation, and centrifuge briefly.	1X	220	880
Paraformaldehyde, 32%	4%	275	1100
Nuclease-free water		1705	6820
Total		2200 μL	8800 µL

Quenching Buffer

Component	[Final]	1 sample + 10%	4 samples + 10%
Conc. Quench Buffer			
Thaw at room temperature. Vortex and centrifuge briefly.	1X	275	1100
Nuclease-free water		1925	7700
Total		2200 μL	8800 µL

Reconstitution of Human Discovery Panel

1. Remove the desired number of panel reactions from 4 °C storage.

Reaction (RXN) of HDP

Critical: All tubes in one reaction pouch are required to stain up to 2 million cells.

- 2. While keeping the tubes in their pouch, incubate at room temperature for 10 minutes.
- 3. Remove the cocktail tubes from the pouch and place each tube, with its cap still on, into a 2.0 mL Eppendorf tube.
- 4. Place the stacked tubes into a centrifuge with a fixed angle rotor.
- 5. Spin at $1500 \times g$ for 30 seconds at room temperature.
- 6. Carefully remove the cocktail tubes from the Eppendorf tubes and place them into a tube rack.

Note: Reconstitution of both Cell Surface and Intracellular cocktails can be performed simultaneously.

7. Add 55 µL of **CS Buffer** to the Cell Surface cocktail tube (purple cap).

Note: Make sure the volume is added BELOW the internal threads of the cocktail tube.

8. Add 55 μ L of **IC Buffer** to the Intracellular cocktail tube (white cap).

Critical: If your pouch contains TWO tubes with white caps add 27.5 μ L of IC Buffer to each. Make sure the volume is added BELOW the internal threads of the cocktail tube.

9. Securely cap the tubes and vortex for 10 seconds.

- 10. Place each cocktail tube into an Eppendorf tube.
- 11. Incubate the cocktail at room temperature for 5 minutes.
- 12. Place the stacked tubes into a centrifuge with a fixed angle rotor.
- 13. Spin at $10,000 \times q$ for 30 seconds at room temperature.
- 14. Remove the stacked tubes carefully from the centrifuge and place them into a tube rack.
- 15. Set the temperature of the centrifuge to 4 °C.
- 16. Remove the cocktail tubes from the Eppendorf tubes and place them into a tube rack.
- 17. Using a P200 pipette with an **extended length pipette tip**, carefully transfer the contents of each cocktail tube to a new 1.5 mL Eppendorf tube.

Critical: Tubes of the same cap color can be pooled into a single Eppendorf tube.

- 18. Place each Eppendorf tube containing the reconstituted **CS** and **IC** pools into a centrifuge with a fixed angle rotor that has been chilled to 4 °C.
- 19. Spin at 14,000 x q for 10 minutes at 4 °C.
- 20. Label two new 1.5 mL Eppendorf tube **CS** and **IC**.
- 21. Without touching the bottom of the Eppendorf tubes, transfer 52 μ L of the contents of the CS and IC tubes to the newly labeled Eppendorf tubes.

Critical: This step removes protein aggregates that may be present.

22. Keep **CS** and **IC** tubes on ice until use.

Stain Cells with Human Discovery Panel (HDP)

23. Prepare up to 2 x 106 cells in 1 mL of CS Buffer in a 1.5 mL Protein LoBind tube.

Fc Block

- 24. Spin cells at $400 \times g$ for 5 minutes at 4°C.
- 25. Using a 1 mL pipette tip, carefully remove supernatant.

Critical: Centrifugation at low-speed results in loose pellets that can be easily disturbed and aspirated during washing steps. Avoid disruption of the cell pellet as much as possible.

- 26. Resuspend cells in 50 μ L of **Blocking Buffer** and gently pipette mix.
- 27. Incubate on ice for 10 minutes.

Cell Surface Stain

28. Without removing **Blocking Buffer**, add 50 μ L reconstituted **Cell Surface (CS) Cocktail** to the cells to bring the total volume to 100 μ L, gently pipette mix.

Critical: If using single antibodies instead of a lyophilized cocktail, prepare CS Staining Solution by adding an appropriate volume of antibody into CS Buffer to a total volume of $50~\mu$ L. This $50~\mu$ L CS Staining Solution is then used in place of the $50~\mu$ L Cell Surface Cocktail.

29. Incubate for 30 minutes at 4 °C.

Wash

- 30. Add 1.4 mL chilled **CS Buffer** to the labeled cells. Gently pipette mix.
- 31. Centrifuge cells at 400 x g for 5 minutes at 4 °C.
- 32. Remove the supernatant without touching the bottom of the tube to avoid dislodging the pellet. Up to 30 μ L supernatant may be left behind if working with < 3 x 10⁵ cells.
- 33. Resuspend the cell pellet in 1.5 mL chilled CS Buffer and place on ice.

- 34. Centrifuge cells at 400 x g for 5 minutes at 4°C. Centrifugation speed and time depend upon the sample type.
- 35. Remove the supernatant without touching the bottom of the tube to avoid dislodging the pellet.

Cell Fixation

- 36. Add 1 mL room temperature **Fixation Buffer** to the and pipette mix 5x.
- 37. Incubate for 20 minutes at room temperature (20 °C).

Critical: DO NOT agitate or mix the sample during incubation.

- 38. Centrifuge at $2,000 \times g$ for 5 minutes at room temperature.
- 39. Remove the supernatant without disturbing the pellet. Up to 30 μ L supernatant may be left behind if working with < 3 x 10 5 cells.
- 40. Add 1 mL chilled **Quenching Buffer** to the sample pellet and pipette mix 5x and keep on ice.

Intracellular Block

- 41. Centrifuge at 2,000 x g for 5 minutes at 4 °C. Remove the supernatant without disturbing the pellet.
- 42. Resuspend pellet in 50 µL IC Buffer
- 43. Incubate for 10 minutes at 4 °C.

Intracellular Staining

44. Without removing the blocking solution, add 50 μL reconstituted Intracellular (IC) Cocktail to the cells and gently pipette mix 10x.

Critical: If using single antibodies instead of a lyophilized cocktail, add IC Buffer for a total volume of 50 μ L, including the volume of antibodies to be used.

45. Incubate for 30 minutes at 4 °C.

Intracellular Wash

- 46. Add 1 mL chilled Wash Buffer to the labeled cells. Gently pipette mix.
- 47. Centrifuge cells at 2,000 x g for 5 minutes at 4 °C.
- 48. Remove the supernatant without touching the bottom of the tube to avoid dislodging the pellet. Up to 30 μ L supernatant may be left behind if working with < 3 x 105 cells.
- 49. Repeat steps 69 to 71 one more time for a total of two washes.

Post Intracellular Stain Fixation

- 50. Add 1 mL room temperature **Fixation Buffer** to the sample pellet and pipette mix 5x.
- 51. Incubate for 1 hour at room temperature (20 °C) or for 16-to-24-hours at 4 °C. If planning to store fixed samples, a 16-to-24-hour fixation at 4 °C is recommended.
 - Critical: DO NOT agitate or mix the sample during incubation.
- 52. Centrifuge at 2000 x g for 5 minutes at room temperature.
- 53. Remove the supernatant without disturbing the pellet. Up to 30 μ L supernatant may be left behind if working with < 3 x 10 5 cells.
- 54. Add 1 mL* chilled **Quenching Buffer** to the sample pellet and pipette mix 5x and keep on ice.
 - * If cell numbers are expected to be < 2×10^5 , resuspend sample pellet in 200 µL **Quenching Buffer**. After counting, add an additional 800 µL **Quenching Buffer** before proceeding to Next GEM Flex Gene Expression protocols or storage.
- 55. Determine cell concentration of the fixed sample using an automated cell counter or hemocytometer.

56. Proceed immediately with the appropriate Next GEM Flex Gene Expression protocols for probe hybridization, single cell partitioning and library generation. Next GEM Flex Gene Expression Reagent Kit for Multiplex samples with Feature Barcode technology for Protein Expression (CG000673 Rev B)

Optional Storage

Fixed cell or nuclei suspensions can be stored at 4°C for up to 1 week or at -80°C for up to 12 months after resuspending in appropriate reagents.

Short-term Storage at 4°C

a. Thaw Enhancer (10x Genomics PN-2000482) for 10 min at 65°C. Vortex and centrifuge briefly. Keep warm and verify no precipitate before use.

DO NOT keep the thawed reagent on ice, or the solution will precipitate. Once thawed, Enhancer can be kept at 42°C for up to 10 min. If not used within 10 min and precipitation is observed, reheat at 65°C to ensure enhancer is fully dissolved again before use.

b. Add 0.1 volume pre-warmed Enhancer to fixed sample in Quenching Buffer.

For example, add 100 μ l Enhancer to 1,000 μ l fixed sample in Quenching Buffer. Pipette mix.

Alternatively, to conserve the Enhancer volume, centrifuge cells at 850 rcf, remove 500 μ l Quenching Buffer, and add 50 μ l Enhancer to the sample.

c. Store sample at 4°C for up to 1 week.

Long-term Storage at -80°C

a. Thaw Enhancer (10x Genomics PN-2000482) for 10 min at 65°C. Vortex and centrifuge briefly. Keep warm and verify no precipitate before use.

DO NOT keep the thawed reagent on ice, or the solution will precipitate. Once thawed, Enhancer can be kept at 42°C for up to 10 min. If not used within 10 min and precipitation

is observed, reheat at 65°C to ensure enhancer is fully dissolved again before use.

b. Add 0.1 volume pre-warmed Enhancer to fixed sample in Quenching Buffer B.

For example, add 100 μ l Enhancer to 1,000 μ l fixed sample in Quenching Buffer Pipette mix.

Alternatively, to conserve the Enhancer volume, centrifuge cells at 850 rcf, remove 500 µl Quenching Buffer, and add 50 µl Enhancer to the sample.

c. Add 50% glycerol for a final concentration of 10%.

For example: add 275 μ l 50% glycerol to 1,100 μ l fixed sample in Quenching Buffer and Enhancer. Pipette mix.

d. Store at -80° C for up to 6 months.

If planning to store the fixed samples, it is strongly recommended to perform a 16-24 h fixation at 4° C during the fixation step and store the fixed samples at -80° C for best results.

Sequencing

Sequencing depth guidelines

Cell Hashing – Add 500 paired-end reads per cell (targeted cell recovery)

HDP library – Add a minimum of 10k paired-end reads per cell (targeted cell recovery)

Run configuration

Read 1: 28 cycles

Index 1: 10 cycles

Index 2: 10 cycles

Read 2: 90 cycles

Feature Reference File

Download from the <u>HDP product page</u>

Contact Us

Questions, concerns, or suggestions? Please contact us at **genomics.support@ptglab.com**